Uneingeschränkter Zugang

Fuzzy Finite Element Analysis for Static Responses of Plane Structures


Zitieren

[1] DUBOIS, D.: Fuzzy sets and systems: theory and applications. Vol. 144, Academic press, 1980. Search in Google Scholar

[2] ZHANG, H.: Nondeterministic linear static finite element analysis: an interval approach. PhD Thesis, Georgia Institute of Technology, 2005. Search in Google Scholar

[3] MUHANNA, R. L. – ZHANG, H. – MULLEN, R. L.: Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliable computing, Vol. 13, No. 2, 2007, pp. 173–194.10.1007/s11155-006-9024-3 Search in Google Scholar

[4] RAO, M. R. – MULLEN, R. L. – MUHANNA, R. L.: A new interval finite element formulation with the same accuracy in primary and derived variables. International Journal of Reliability and Safety, Vol. 5, No. 3–4, 2011, pp. 336–357.10.1504/IJRS.2011.041184 Search in Google Scholar

[5] DEGRAUWE, D. – LOMBAERT, G. – DE ROECK, G.: Improving interval analysis in finite element calculations by means of affine arithmetic. Computers & Structures, Vol. 88, No. 3, 2010, pp. 247–254.10.1016/j.compstruc.2009.11.003 Search in Google Scholar

[6] ADHIKARI, S. – KHODAPARAST, H. H.: A spectral approach for fuzzy uncertainty propagation in finite element analysis. Fuzzy Sets and Systems, Vol. 243, 2014, pp. 1–24.10.1016/j.fss.2013.10.005 Search in Google Scholar

[7] BEHERA, D. D. – CHAKRAVERTY, S. – HUANG, H. Z.: Non-probabilistic uncertain static responses of imprecisely defined structures with fuzzy parameters. Journal of Intelligent & Fuzzy Systems, Vol. 30, 2016, pp. 3177–3189.10.3233/IFS-152061 Search in Google Scholar

[8] SU, J. – ZHU, Y. – WANG, J.: An improved interval finite element method based on the element-by-element technique for large truss system and plane problems. Advances in Mechanical Engineering, Vol. 10, No. 4, 2018, pp. 1–10.10.1177/1687814018769159 Search in Google Scholar

[9] MÖLLER, B. – BEER, M.: Fuzzy randomness: uncertainty in civil engineering and computational mechanics. Springer Science & Business Media, 2004. Search in Google Scholar

[10] DEGRAUWE, D.: Uncertainty Propagation in Structural Analysis by Fuzzy Numbers (Onzekerheidsvoortplanting in structuuranalyse met vaaggetallen), 2007. Search in Google Scholar

[11] FARKAS, L. – MOENS, D. – VANDEPITTE, D.: Fuzzy finite element analysis based on reanalysis technique. Structural Safety, Vol. 32, No. 6, 2010, pp. 442–448.10.1016/j.strusafe.2010.04.004 Search in Google Scholar

[12] DONG, W. – SHAH, H. C.: Vertex method for computing functions of fuzzy variables. Fuzzy Sets and Systems, Vol. 24, No. 1, 1987, pp. 65–78.10.1016/0165-0114(87)90114-X Search in Google Scholar

[13] HANSS, M.: Applied fuzzy arithmetic, Springer, 2005. Search in Google Scholar

[14] DONDERS, S. – VANDEPITTE, D. – VAN DE PEER, J.: Assessment of uncertainty on structural dynamic responses with the short transformation method. Journal of Sound and Vibration, Vol. 288, No. 3, 2005, pp. 523–549.10.1016/j.jsv.2005.07.003 Search in Google Scholar

[15] GIANNINI, O. – HANSS, M.: The component mode transformation method: a fast implementation of fuzzy arithmetic for uncertainty management in structural dynamics. Journal of Sound and Vibration, Vol. 311, No. 3–5, 2008, pp. 1340–1357.10.1016/j.jsv.2007.10.029 Search in Google Scholar

[16] AKPAN, U. O. – KOKO, T. S. – ORISAMOLU, I. R.: Practical fuzzy finite element analysis of structures. Finite Elements in Analysis and Design, Vol. 38, No. 2, 2001, pp. 93–111.10.1016/S0168-874X(01)00052-X Search in Google Scholar

[17] DE MUNCK, M. – MOENS, D. – DESMET, W.: A response surface based optimisation algorithm for the calculation of fuzzy envelope FRFs of models with uncertain properties. Computers & Structures, Vol. 86, No. 10, 2008, pp. 1080–1092.10.1016/j.compstruc.2007.07.006 Search in Google Scholar

[18] BALU, A. S. – RAO, B. N.: High dimensional model representation based formulations for fuzzy finite element analysis of structures. Finite Elements in Analysis and Design, Vol. 50, 2012, pp. 217–230.10.1016/j.finel.2011.09.012 Search in Google Scholar

[19] TUAN, N. H. – HUYNH, L. X. – ANH, P. H.: A fuzzy finite element algorithm based on response surface method for free vibration analysis of structure. Vietnam Journal of Mechanics, Vol. 37, No. 1, 2015, pp. 17–27.10.15625/0866-7136/37/1/3923 Search in Google Scholar

[20] PHAM, H. A. – TRUONG, V. H. – VU, T. C.: Fuzzy finite element analysis for free vibration response of functionally graded semi-rigid frame structures. Applied Mathematical Modelling, V. 88, 2020, pp. 852–869.10.1016/j.apm.2020.07.014 Search in Google Scholar

[21] DE GERSEM, H. – MOENS, D. – DESMET, W.: A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 2—Numerical case studies. Journal of Sound and Vibration, Vol. 288, No. 3, 2005, pp. 463–486.10.1016/j.jsv.2005.07.002 Search in Google Scholar

[22] MOENS, D. – VANDEPITTE, D.: A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures: Part 1—Procedure. Journal of sound and vibration, Vol. 288, N. 3, 2005, pp. 431–462.10.1016/j.jsv.2005.07.001 Search in Google Scholar

[23] DE GERSEM, H. – MOENS, D. – DESMET, W.: Interval and fuzzy finite element analysis of mechanical structures with uncertain parameters. Proceedings of the International Conference on Noise and Vibration Engineering ISMA, 2004. Search in Google Scholar

[24] MAJOR, I. – MAJOR, M.: Application of the Perturbation Method for Determination of Eigenvalues and Eigenvectors for the Assumed Static Strain. Civil and Environmental Engineering, Vol. 10, Iss. 2, 2014, pp. 111–120.10.2478/cee-2014-0020 Search in Google Scholar

[25] STEFANOU, G.: The stochastic finite element method: past, present and future. Computer methods in applied mechanics and engineering, Vol. 198, No. 9–12, 2009, pp. 1031–1051.10.1016/j.cma.2008.11.007 Search in Google Scholar

[26] ZHENYU, L. – QIU, C.: A new approach to fuzzy finite element analysis. Computer methods in applied mechanics and engineering, Vol. 191, No. 45, 2002, pp. 5113–5118.10.1016/S0045-7825(02)00240-2 Search in Google Scholar

[27] HUANG, H. Z. – LI, H. B.: Perturbation finite element method of structural analysis under fuzzy environments. Engineering Applications of Artificial Intelligence, Vol. 18, No. 1, 2005, pp. 83–91.10.1016/j.engappai.2004.08.033 Search in Google Scholar

[28] ANH, P. H.: Fuzzy analysis of laterally-loaded pile in layered soil. Vietnam Journal of Mechanics, Vol. 36, No. 3, 2014, pp. 173–183.10.15625/0866-7136/36/3/3739 Search in Google Scholar

[29] MASON, R. L. – GUNST, R. F. – HESS, J. L.: Statistical design and analysis of experiments: with applications to engineering and science, Vol. 474, John Wiley & Sons, 2003.10.1002/0471458503 Search in Google Scholar

[30] TRAN, T. V. – VU, Q. A. – LE, X. H.: Fuzzy analysis for stability of steel frame with fixity factor modelled as triangular fuzzy number. Advances in computational design, Vol. 2, No. 1, 2017, pp. 29–42.10.12989/acd.2017.2.1.029 Search in Google Scholar

[31] DUBOIS, D.: Possibility theory and statistical reasoning. Computational statistics & data analysis, Vol. 51, No. 1, 2006, pp. 47–69.10.1016/j.csda.2006.04.015 Search in Google Scholar

[32] DUBOIS, D. – FOULLOY, L. – MAURIS, G.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable computing, Vol. 10, No. 4, 2004, pp. 273–297.10.1023/B:REOM.0000032115.22510.b5 Search in Google Scholar

[33] DUBOIS, D. – PRADE, H.: Possibility theory and its applications: Where do we stand? Springer handbook of computational intelligence, Springer, 2015, pp. 31–60.10.1007/978-3-662-43505-2_3 Search in Google Scholar

[34] QUEIPO, N. V. – HAFTKA, R. T. – SHYY, W.: Surrogate-based analysis and optimization. Progress in aerospace sciences, Vol. 41, No. 1, 2005, pp. 1–28.10.1016/j.paerosci.2005.02.001 Search in Google Scholar

[35] MICHALEWICZ, Z.: Genetic algorithms+ data structures= evolution programs. Springer Science & Business Media, 2013. Search in Google Scholar

[36] TEODORU, I. B. – MUŞAT, V.: The modified Vlasov foundation model: an attractive approach for beams resting on elastic supports. EJGE, Vol. 15, 2010, pp.1–13. Search in Google Scholar

[37] CHOU, C. C.: A generalized similarity measure for fuzzy numbers. Journal of Intelligent & Fuzzy Systems, Vol. 30, No. 2, 2016, pp. 1147–1155.10.3233/IFS-151838 Search in Google Scholar

eISSN:
2199-6512
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Volkswirtschaft, Wirtschaftstheorie, -systeme und -strukturen, Betriebswirtschaft, Branchen, Umweltmanagement