Uneingeschränkter Zugang

Impact of Turbulence Models of Wind Pressure on two Buildings with Atypical Cross-Sections


Zitieren

[1] STATHOPOULOS, T.: Computational wind engineering: past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67–68, 1997, pp. 509–532, https://doi.org/10.1016/S0167-6105(97)00097-4.10.1016/S0167-6105(97)00097-4 Search in Google Scholar

[2] BAKER, C. J.: Wind engineering - past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, 2007, pp. 843–870, https://doi.org/10.1016/j.jweia.2007.01.011.10.1016/j.jweia.2007.01.011 Search in Google Scholar

[3] BLOCKEN, B.: 50 years of computational wind engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 129, 2014, pp. 69–102, https://doi.org/10.1016/j.jweia.2014.03.008.10.1016/j.jweia.2014.03.008 Search in Google Scholar

[4] BLOCKEN, B.: Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, Vol. 91, 2015, pp. 219–245, https://doi.org/10.1016/j.buildenv.2015.02.015.10.1016/j.buildenv.2015.02.015 Search in Google Scholar

[5] MOK, W. K. – CHOW, W. K.: Verification and validation in modeling fire by computational fluid dynamics. International Journal on Architectural Science, Vol. 5, Iss. 3, 2004, pp. 58–67, https://www.bse.polyu.edu.hk/researchCentre/Fire_Engineering/summary_of_output/journal/IJAS/V5/p.58-67.pdf. Search in Google Scholar

[6] CHARNEY, J. G.: The use of the primitive equations of motion in numerical prediction. Tellus, Vol. 7, 1955, pp. 22–26, https://doi.org/10.1111/j.2153-3490.1955.tb01138.x.10.1111/j.2153-3490.1955.tb01138.x Search in Google Scholar

[7] SMAGORINSKY, J.: On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Monthly Weather Review, Vol. 86, Iss. 12, 1958, pp. 457–466, https://doi.org/10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2.10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2 Search in Google Scholar

[8] MURAKAMI, S. – MOCHIDA, A.: Past, present and future of CWE. The view from 1999. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, 1999, pp. 91–104. Search in Google Scholar

[9] MURAKAMI, S.: Overview of turbulence models applied in CWE–1997. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 74–76, 1998, pp. 1–24, https://doi.org/10.1016/S0167-6105(98)00004-X.10.1016/S0167-6105(98)00004-X Search in Google Scholar

[10] RICHARDS, P. J. – HOXEY, R. P.: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Computational Wind Engineering 1, Elsevier, 1993, pp. 145–153, https://doi.org/10.1016/B978-0-444-81688-7.50018-8.10.1016/B978-0-444-81688-7.50018-8 Search in Google Scholar

[11] BLOCKEN, B. – STATHOPOULOS, T – CARMELIET, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, Vol. 41, Iss. 2, 2007, pp. 238–252, https://doi.org/10.1016/j.atmosenv.2006.08.019.10.1016/j.atmosenv.2006.08.019 Search in Google Scholar

[12] FRANKE, J. – HELLSTEN, A. – SCHLÜNZEN, H. – CARISSIMO, B.: Best practice guideline for the CFD simulation of flows in the urban environment. COST Office, 2007. Search in Google Scholar

[13] YANG, Y. – GU, M. – CHEN, S. – JIN, X.: New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 97, Iss. 2, 2009, pp. 88–95, https://doi.org/10.1016/j.jweia.2008.12.001.10.1016/j.jweia.2008.12.001 Search in Google Scholar

[14] MURAKAMI, S. – MOCHIDA, A.: Three-dimensional numerical simulation of turbulent flow around buildings using the kε turbulence model. Building and Environment, Vol. 24, Iss. 1, 1989, pp. 51–64, https://doi.org/10.1016/0360-1323(89)90016-4.10.1016/0360-1323(89)90016-4 Search in Google Scholar

[15] MURAKAMI, S. – MOCHIDA, A. – HAYASHI, Y. – SAKAMOTO, S.: Numerical study on velocity-pressure field and wind forces for bluff bodies by κ-ϵ, ASM and LES. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 44, Iss. 1–3, 1992, pp. 2841–2852, https://doi.org/10.1016/0167-6105(92)90079-P.10.1016/0167-6105(92)90079-P Search in Google Scholar

[16] MURAKAMI, S.: Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 46–47, 1993, pp. 21–36, https://doi.org/10.1016/0167-6105(93)90112-2.10.1016/0167-6105(93)90112-2 Search in Google Scholar

[17] JONES, W. P. – LAUNDER, B. E.: The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, Vol. 15, Iss. 2, 1972, pp. 301–314, https://doi.org/10.1016/0017-9310(72)90076-2.10.1016/0017-9310(72)90076-2 Search in Google Scholar

[18] SHIH, T. – LIOU, W. W. – SHABBIR, A. – YANG, Z. – ZHU, J.: A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, Vol. 24, Iss. 3, 1995, pp. 227–238, https://doi.org/10.1016/0045-7930(94)00032-T.10.1016/0045-7930(94)00032-T Search in Google Scholar

[19] WILCOX, D. C.: Turbulence modeling for CFD. Vol. 2, 1998, pp. 103–217 La Canada, CA: DCW industries. Search in Google Scholar

[20] MENTER, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, Vol. 32, Iss. 8, 1994, pp. 1598–1605, https://doi.org/10.2514/3.12149.10.2514/3.12149 Search in Google Scholar

[21] HUBOVÁ, O – LOBOTKA, P.: The Multipurpose New Wind Tunnel STU. Civil and Environmental Engineering, Vol. 10, Iss. 1, 2014, pp. 1–9, https://doi.org/10.2478/cee-2014-0001.10.2478/cee-2014-0001 Search in Google Scholar

[22] STN EN 1991-1-4, Eurocode 1: Actions on structures. Part 1-4: General actions. Wind actions, Slovak Office of Standards, Metrology and Testing, 2007. Search in Google Scholar

[23] CERMAK, J. E. et al.: Wind Tunnel Studies of Buildings and Structures: ASCE Manuals and Reports on Engineering Practice, 1999, Virginia: American Society of Civil Engineers. Search in Google Scholar

[24] MEDVECKÁ, S – IVÁNKOVÁ, O. – MACÁK, M. – MICHALCOVÁ, V.: Determination of Pressure Coefficient for a High-rise Building with Atypical Ground Plan. Civil and Environmental Engineering, Vol. 14, Iss. 2, 2018, pp. 138–145, https://doi.org/10.2478/cee-2018-0018.10.2478/cee-2018-0018 Search in Google Scholar

[25] TOMINAGA, Y. – MOCHIDA, A. – YOSHIE, R. – KATAOKA, H. – NOZU, T. – YOSHIKAWA, M. – SHIRASAWA, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, Iss. 10 - 11, 2008, pp. 1749–1761, https://doi.org/10.1016/j.jweia.2008.02.058.10.1016/j.jweia.2008.02.058 Search in Google Scholar

[26] VAN HOOFF, T. – BLOCKEN, B.: Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the Amsterdam ArenA stadium. Environmental Modelling and Software, Vol. 25, Iss. 1, 2010, pp. 51–65, https://doi.org/10.1016/j.envsoft.2009.07.008.10.1016/j.envsoft.2009.07.008 Search in Google Scholar

[27] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2020. Search in Google Scholar

[28] CHANG, J. C. – HANNA, S. R.: Air quality model performance evaluation. Meteorology and Atmospheric Physics, Vol. 87, 2004, pp. 167–196, https://doi.org/10.1007/s00703-003-0070-710.1007/s00703-003-0070-7 Search in Google Scholar

eISSN:
2199-6512
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Volkswirtschaft, Wirtschaftstheorie, -systeme und -strukturen, Betriebswirtschaft, Branchen, Umweltmanagement