Uneingeschränkter Zugang

Elemental composition of fly ash: a comparative study using nuclear and related analytical techniques / Skład pierwiastkowy popiołów lotnych: studium przypadku z wykorzystaniem metod nuklearnych i analitycznych


Zitieren

[1] Haynes RJ. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs. J Environ Management. 2009;90:43-53. DOI:10.1016/j.jenvman.2008.07.003.10.1016/j.jenvman.2008.07.00318706753Search in Google Scholar

[2] Fulekar M, Dave J. Disposal of fly ash-an environmental problem. Intern J Environ Studies. 1986;26:191-215. DOI: 10.1080/00207238608710257.10.1080/00207238608710257Search in Google Scholar

[3] Jankowski J, Ward C, French D, Groves S. Mobility of trace elements from selected Australian fly ashes and its potential impacts on aquatic ecosystems. Fuel. 2006;85:243-256. DOI: 10.1016/j.fuel.2005.05.028.10.1016/j.fuel.2005.05.028Search in Google Scholar

[4] Sushil S, Batra S. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 2006;85:2676-2679. DOI: 10.1016/j.fuel.2006.04.031.10.1016/j.fuel.2006.04.031Search in Google Scholar

[5] Gitari W, Petrik L, Etchebers O, Key Dm, Okujeni C. Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. Fuel. 2008;87:2450-2462. DOI: 10.1016/j.fuel.2008.03.018.10.1016/j.fuel.2008.03.018Search in Google Scholar

[6] Dellantonio A, Fitz W, Custovic H, Repmann F, Schneider B, Grünewald H, et al. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environ Pollut. 2008;153:677-686. DOI: 10.1016/j.envpol.2007.08.032.10.1016/j.envpol.2007.08.03217949870Search in Google Scholar

[7] Senapati M. Fly ash from thermal power plants - waste management and overview. Current Science. 2011;100(12):1791-1974.Search in Google Scholar

[8] Neupane G, Donahoe R. Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 2013;104:758-770. DOI: 10.1016/j.fuel.2012.06.013.10.1016/j.fuel.2012.06.013Search in Google Scholar

[9] Adriano DC, Page PL, Elseewi AA, Straughan I. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. J Environ Qual. 1980;9(3):333-344. DOI: 10.2134/jeq1980.00472425000900030002x.10.2134/jeq1980.00472425000900030002xSearch in Google Scholar

[10] Asokana P, Saxena M, Asolekar S. Coal combustion residues - environmental implications and recycling potentials. Resources, Conservation and Recycling. 2005;43:239-262. DOI: 10.1016/j.resconrec.2004.06.003.10.1016/j.resconrec.2004.06.003Search in Google Scholar

[11] Dutta B, Khanra S, Mallick D. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel. 2009;88:1314-1323. DOI: 10.1016/j.fuel.2009.01.005.10.1016/j.fuel.2009.01.005Search in Google Scholar

[12] Izquierdo M, Querol X. Leaching behaviour of elements from coal combustion fly ash: An overview. International J Coal Geol. 2012;94:54-66. DOI: 10.1016/j.coal.2011.10.006.10.1016/j.coal.2011.10.006Search in Google Scholar

[13] Blissett R, Rowson N. A review of the multi-component utilisation of coal fly ash. Fuel. 2012;97:1-23. DOI: doi.org/10.1016/j.fuel.2012.03.024.10.1016/j.fuel.2012.03.024Search in Google Scholar

[14] Vassilev S, Vassileva C. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals. Fuel Processing Technol. 2006;87:1095-1116. DOI: 10.1016/j.fuproc.2006.08.006.10.1016/j.fuproc.2006.08.006Search in Google Scholar

[15] Smolka-Danielowska D. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region. J Environ Radioactiv. 2010;101:965-968. DOI: 10.1016/j.jenvrad.2010.07.001. 10.1016/j.jenvrad.2010.07.00120713303Search in Google Scholar

[16] Kashiwakura S, Kumagai Y, Kubo H, Wagatsuma K. Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent. Open J Phys Chem. 2013; 3:69-75. DOI: 10.4236/ojpc.2013.32009.10.4236/ojpc.2013.32009Search in Google Scholar

[17] Davison R, Natusch D, Wallace J. Trace elements in fly ash dependence of concentration on particle size. Environ Sci Technol. 1974;13:1107-1113. DOI: 10.1021/es60098a003.10.1021/es60098a003Search in Google Scholar

[18] McNally D, Crowley-Parmentier J, Whitman B. Trace metal leaching and bioavailability of coal-generated fly ash. Int Res J Environ Sci. 2012;1(5):76-80.Search in Google Scholar

[19] Parami V, Sahoo S, Yonehara H, Takeda S, Quirit L. Accurate determination of naturally occurring radionuclides in Philippine coal-fired thermal power plants using inductively coupled plasma mass spectrometry and γ-spectroscopy. Microchem J. 2010;95:181-185. DOI: 10.1016/j.microc.2009.11.008.10.1016/j.microc.2009.11.008Search in Google Scholar

[20] Dogan O, Symsek Ö, Nuhoglu Y, Kopya M, Ertugrul M. Geochemistry, soil, and environmental sciences x-ray fluorescence spectrometry analysis of trace elements in fly ash samples of Kemerköy thermal power plants. J Trace Microprobe Techniques. 2001;19(2):289-295. DOI: 10.1081/TMA-100002218.10.1081/TMA-100002218Search in Google Scholar

[21] Spears D. The use of laser ablation inductively coupled plasma-mass spectrometry (LA ICP-MS) for the analysis of fly ash. Fuel. 2004;83(13):1765-1770. DOI: 10.1016/j.fuel.2004.02.018.10.1016/j.fuel.2004.02.018Search in Google Scholar

[22] Rowe JJ, Steinnes E. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons. J Radioanal Chem. 1977;37:849-856. DOI: 10.1007/BF02519396.10.1007/BF02519396Search in Google Scholar

[23] Hansen Y, Notten P, Petrie G. A life cycle impact assessment indicator for ash management in coal-based power generation. The Journal of The South African Institute of Mining and Metallurgy. 2002, July/August, 299-306.Search in Google Scholar

[24] Petrik L, White R, Klink M, Somerset V, Burgers C, Frey M. Utilisation of South African fly ash to treat acid mine drainage, and production of high quality zeolites from the residual solids. In: Proceedings of the 2003 International Ash Utilisation Symposium. University of Kentucky, USA, Paper no. 61. http://www.flyash.info.Search in Google Scholar

[25] Dmitriev AY, Pavlov SS. Automation of quantitative determination of elemental content of samples by neutron activation analysis at the reactor IBR-2 in FLNP JINR. Physics of Particles and Nuclei Letters. 2013;10(178):58-64. DOI: 10.1134/S1547477113010056.10.1134/S1547477113010056Search in Google Scholar

[26] National Institute of Standards and Technology (NIST). Certificate of Analysis, Standard Reference Material, 1633. 2008.Search in Google Scholar

[27] Jackson BP, Miller WP. Arsenic and selenium speciation in coal fly ash extracts by ion chromatographyinductively coupled plasma mass spectrometry. J Analyt Atomic Spectrometry. 1998;13:1107-1112. DOI: 10.1039/A806159I.10.1039/a806159iSearch in Google Scholar

[28] www.marscigrp.org/elconv.html.Search in Google Scholar

[29] Bode P, Greenberg RR, De Nadai Fernandes EA. Neutron activation analysis: a primary (ratio) method to determine SI-traceable values of element content in complex samples. Chimia. 2009;63(10):678-680. DOI: http://dx.doi.org/10.2533/chimia.2009.678.10.2533/chimia.2009.678Search in Google Scholar

[30] ASTM, Standard specification for fly ash and raw or calcined natural pozzolan for use as mineral admixture in Portland cement concrete. Pennsylvania: American Society for Testing and Materials; 1994.Search in Google Scholar

[31] McCarthy GJ. X-ray powder diffraction for studying the mineralogy of fly ash. MRS Proceedings, 1987;113:75-86. DOI: 10.1557/PROC-113-75.10.1557/PROC-113-75Search in Google Scholar

[32] Hou X, Jones B. Inductively Coupled Plasma/Optical Emission Spectrometry. In: Encyclopedia of Analytical Chemistry. Meyers RA, editor. Chichester: John Wiley & Sons Ltd; 2000; 9468-9485.10.1002/9780470027318.a5110Search in Google Scholar

[33] Chen M, Ma L. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J. 2001;65:491-499. DOI: 10.2136/sssaj2001.652491x.10.2136/sssaj2001.652491xSearch in Google Scholar

[34] Enamorado-Báez S, Abril L, Gómez-Guzmán J. Determination of 25 trace element concentrations in biological reference materials by icp-ms following different microwave-assisted acid digestion methods based on scaling masses of digested samples. ISRN Analyt Chem. 2013:1-14. DOI: 10.1155/2013/851713.10.1155/2013/851713Search in Google Scholar

[35] Hannaker P, Haukka M, Sen S. Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials. Chem Geol. 1984;42:319-324.10.1016/0009-2541(84)90025-1Search in Google Scholar

[36] Brown R, Milton M. Analytical techniques for trace element analysis: an overview. Trends in Analyt Chem. 2005;24(3):266-274. DOI: 10.1016/j.trac.2004.11.010.10.1016/j.trac.2004.11.010Search in Google Scholar

[37] Zhang Y, Jiang Z, He M, Hu B. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environ Pollut. 2007;148:459-467. DOI: 10.1016/j.envpol.2006.12.004.10.1016/j.envpol.2006.12.00417466423Search in Google Scholar

[38] Iwashita A, Nakajima T, Takanashi H, Akira Ohki A, Yoshio Fujita Y, Yamashita T. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES. Fuel. 2005;85:257-263. DOI:10.1016/j.fuel.2005.04.034. 10.1016/j.fuel.2005.04.034Search in Google Scholar

[39] Misra N. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials. Pramana J Phys. 2011;76(2):201-212. DOI: 10.1007/s12043-011-0046-y. 10.1007/s12043-011-0046-ySearch in Google Scholar

ISSN:
2084-4506
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, andere