Uneingeschränkter Zugang

Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate

 und   
30. Nov. 2023

Zitieren
COVER HERUNTERLADEN

Gosztonyi, M., J. CsáknéFilep, S. Zsigmond-Heinczinger. Comparison of Applicability of Startup Life Cycle Theories Based on Natural Language Processing. – Eastern European Economics, Vol. 60, 2022, No 6, pp. 511-539. Search in Google Scholar

Savin, I., K. Chukavina, A. Pushkarev. Topic-Based Classification and Identification of Global Trends for Startup Companies. – Small Business Economics, Vol. 60, 2023, No 2, pp. 659-689. Search in Google Scholar

Bangarigadu, K., R. Nunkoo. A Success Versus Failure Prediction Model for Small Firms. – Journal of African Business, 2022, pp. 1-17. Search in Google Scholar

Díaz-Santamaría, C., J. Bulchand-Gidumal. Econometric Estimation of the Factors that Influence Startup Success. – Sustainability, Vol. 13, 2021, No 4, 2242. Search in Google Scholar

Pasayat, A. K., A. Mitra, B. Bhowmick. Determination of Essential Features for Predicting Start-Up Success: An Empirical Approach Using Machine Learning. – Technology Analysis & Strategic Management, 2022, pp. 1-19. Search in Google Scholar

Kaiser, U., J. M. Kuhn. The Value of Publicly Available, Textual and Non-Textual Information for Startup Performance Prediction. – Journal of Business Venturing Insights, Vol. 14, 2020, e00179. Search in Google Scholar

Archibald, T. W., E. Possani. Investment and Operational Decisions for Start-Up Companies: A Game Theory and Markov Decision Process Approach. – Annals of Operations Research, Vol. 299, 2021, No 1-2, pp. 317-330. Search in Google Scholar

Gupta, V., L. Rubalcaba. Competency-Industry Relatedness (C-IR) Framework for Sustained Business Growth in Startups during and Beyond Pandemic: Myths and Lessons from Publicly Funded Innovative Startups. – Sustainability, Vol. 13, 2021, No 9, 4632. Search in Google Scholar

Kim, H. J., T. S. Kim, S. Y. Sohn. Recommendation of Startups as Technology Cooperation Candidates from the Perspectives of Similarity and Potential: A Deep Learning Approach. – Decision Support Systems, Vol. 130, 2020, 113229. Search in Google Scholar

Gyimah, P., K. O. Appiah, R. N. Lussier. Success Versus Failure Prediction Model for Small Businesses in Ghana. – Journal of African Business, Vol. 21, 2020, No 2, pp. 215-234. Search in Google Scholar

Bai, S., Y. Zhao. Startup Investment Decision Support: Application of Venture Capital Scorecards Using Machine Learning Approaches. – Systems, Vol. 9, 2021, No 3, 55. Search in Google Scholar

Antretter, T., I. Blohm, D. Grichnik, J. Wincent. Predicting New Venture Survival: A Twitter-Based Machine Learning Approach to Measuring Online Legitimacy. – Journal of Business Venturing Insights, Vol. 11, 2019, e00109. Search in Google Scholar

Zerhari, B., A. Lehcen, S. Mouline. A New Horizo-Vertical Distributed Feature Selection Approach. – Cybernetics and Information Technologies, Vol. 18, 2018, No 4, pp. 15-28. Search in Google Scholar

Akhiat, Y., Y. Manzali, M. Chahhou, A. Zinedine. A New Noisy Random Forest Based Method for Feature Selection. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 10-28. Search in Google Scholar

Alhenawi, E., H. Alazzam, R. Al-Sayyed, O. AbuAlghanam, O. Adwan. Hybrid Feature Selection Method for Intrusion Detection Systems Based on an Improved Intelligent Water Drop Algorithm. – Cybernetics and Information Technologies, Vol. 22, 2022, No 4, pp. 73-90. Search in Google Scholar

Veganzones, D. Corporate Failure Prediction Using Threshold‐Based Models. – Journal of Forecasting, Vol. 41, 2022, No 5, pp. 956-979. Search in Google Scholar

Ross, G., S. Das, D. Sciro, H. Raza. CapitalVX: A Machine Learning Model for Startup Selection and Exit Prediction. – The Journal of Finance and Data Science, Vol. 7, 2021, pp. 94-114. Search in Google Scholar

Żbikowski, K., P. Antosiuk. A Machine Learning, Bias-Free Approach for Predicting Business Success Using Crunchbase Data. – Information Processing & Management, Vol. 58, 2021, No 4, 102555. Search in Google Scholar

Allu, R., V. N. R. Padmanabhuni. Predicting the Success Rate of a Start-Up Using LSTM with a Swish Activation Function. – Journal of Control and Decision, Vol. 9, 2022, No 3, pp. 355-363. Search in Google Scholar

Fuertes-Callén, Y., B. Cuellar-Fernández, C. Serrano-Cinca. Predicting Startup Survival Using First Years Financial Statements. – Journal of Small Business Management, Vol. 60, 2022, No 6, pp. 1314-1350. Search in Google Scholar

Elhoseny, M., N. Metawa, G. Sztano, I. M. El-Hasnony. Deep Learning-Based Model for Financial Distress Prediction. – Annals of Operations Research, 2022, pp. 1-23. Search in Google Scholar

Kou, G., Y. Xu, Y. Peng, F. Shen, Y. Chen, K. Chang, S. Kou. Bankruptcy Prediction for SMEs Using Transactional Data and Two-Stage Multiobjective Feature Selection. – Decision Support Systems, Vol. 140, 2021, 113429. Search in Google Scholar

Crunch Base Dataset. https://www.kaggle.com/datasets/arindam235/startup-investments-crunchbase Search in Google Scholar

Zhou, S., L. Zhou, M. Mao, H.-M. Tai, Y. Wan. An Optimized Heterogeneous Structure LSTM Network for Electricity Price Forecasting. – IEEE Access, Vol. 7, 2019, pp. 108161-108173. Search in Google Scholar

Zhu, H., H. Zeng, J. Liu, X. Zhang. Logish: A New Nonlinear Nonmonotonic Activation Function for Convolutional Neural Network. – Neurocomputing, Vol. 458, 2021, pp. 490-499. Search in Google Scholar

Toğaçar, M., N. Muzoğlu, B. Ergen, B. S. B. Yarman, A. M. Halefoğlu. Detection of COVID-19 Findings by the Local Interpretable Model-Agnostic Explanations Method of Types-Based Activations Extracted from CNNs. – Biomedical Signal Processing and Control, Vol. 71, 2022, 103128. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informationstechnik