Predicting User Behavior in e-Commerce Using Machine Learning
Online veröffentlicht: 28. Sept. 2023
Seitenbereich: 89 - 101
Eingereicht: 10. Juli 2023
Akzeptiert: 30. Aug. 2023
DOI: https://doi.org/10.2478/cait-2023-0026
Schlüsselwörter
© 2023 Rumen Ketipov et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each person’s unique traits hold valuable insights into their consumer behavior, allowing scholars and industry experts to develop innovative marketing strategies, personalized solutions, and enhanced user experiences. This study presents a conceptual framework that explores the connection between fundamental personality dimensions and users’ online shopping styles. By employing the TIPI test, a reliable and validated alternative to the Five-Factor model, individual consumer profiles are established. The results reveal a significant relationship between key personality traits and specific online shopping functionalities. To accurately forecast customers’ needs, expectations, and preferences on the Internet, we propose the implementation of two Machine Learning models, namely Decision Trees and Random Forest. According to the applied evaluation metrics, both models demonstrate fine predictions of consumer behavior based on their personality.