1. bookVolumen 22 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning

Online veröffentlicht: 22 Sep 2022
Volumen & Heft: Volumen 22 (2022) - Heft 3 (September 2022)
Seitenbereich: 93 - 110
Eingereicht: 15 Feb 2022
Akzeptiert: 02 Aug 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Blagoev, I., G. Vassileva, V. Monov. A Model for e-Learning Based on the Knowledge of Learners. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 121-135.10.2478/cait-2021-0023 Search in Google Scholar

2. Gumbheer, C. P., K. K. Khedo, A. Bungaleea. Personalized and Adaptive Context-Aware Mobile Learning: Review, Challenges and Future Directions. – Educ. Inf. Technol., 2022, No 0123456789. DOI: 10.1007/s10639-022-10942-8.885328335194377 DOI öffnenSearch in Google Scholar

3. Chen, C. M., Y. L. Li. Personalised Context-Aware Ubiquitous Learning System for Supporting Effective English Vocabulary Learning. – Interact. Learn. Environ., Vol. 18, 2010, No 4, pp. 341-364. DOI: 10.1080/10494820802602329. DOI öffnenSearch in Google Scholar

4. Fuad, M. M., D. Deb. Cloud-Enabled Hybrid Architecture for In-Class Interactive Learning Using Mobile Device. – In: Proc. of 5th IEEE Int. Conf. Mob. Cloud Comput. Serv. Eng., 2017, pp. 0-3. DOI: 10.1109/MobileCloud.2017.15. DOI öffnenSearch in Google Scholar

5. Gomez, S., P. Zervas, D. G. Sampson, R. Fabregat. Context-Aware Adaptive and Personalized Mobile Learning Delivery Supported by UoLmP. – J. King Saud Univ. Comput. Inf. Sci., Vol. 26, 2014, No 1, pp. 47-61. DOI: 10.1016/j.jksuci.2013.10.008. DOI öffnenSearch in Google Scholar

6. Harchay, A., L. Cheniti-Belcadhi, R. Braham. A Context-Aware Approach for Personalized Mobile Self-Assessment. – J. Univers. Comput. Sci., Vol. 21, 2015, No 8, pp. 1061-1085. Search in Google Scholar

7. Karadimce, A., D. Davcev. Adaptive Multimedia Content in Mobile Cloud Computing Environment. – In: Proc. of IEEE 1st Int. Conf. Cloud Netw. (CLOUDNET’12), 2012, pp. 209-211. DOI: 10.1109/CloudNet.2012.6483690. DOI öffnenSearch in Google Scholar

8. Karoudis, K., G. Magoulas. Ubiquitous Learning Architecture to Enable Learning Path Design across the Cumulative Learning Continuum. – Informatics, Vol. 3, 2016, No 4, p. 19. DOI: 10.3390/informatics3040019. DOI öffnenSearch in Google Scholar

9. Madani, H. H., L. Jemni, B. E. N. Ayed, M. Jemni, D. G. Sampson. Towards Accessible and Personalized Mobile Learning for Learners with Disabilities. – In: Proc. of 4th Int. Conf. Inf. Commun. Technol. Access., 2013. Search in Google Scholar

10. Bhawna, Gobind. Research Methodology and Communication. – IOSR J. Res. Method Educ., Vol. 5, 2015, No 3, pp. 48-51. DOI: 10.9790/7388-05344851. DOI öffnenSearch in Google Scholar

11. Lane, S., P. Lago, Q. Gu, I. Richardson. Adaptation of Service-Based Application : A Maintenance Process? – The Irish Software Engineering Research Centre, No 03, 2011. Search in Google Scholar

12. Alferez, G. H., V. Pelechano, R. Mazo, C. Salinesi, D. Diaz. Dynamic Adaptation of Service Compositions with Variability Models. – J. Syst. Softw., Vol. 91, 2014, No 1, pp. 24-47. DOI: 10.1016/j.jss.2013.06.034. DOI öffnenSearch in Google Scholar

13. Baroudi, T., Y. Benamar, A. Bendimerad. Dynamic Service Adaptation Architecture. – Softw. - Pract. Exp., Vol. 8, 2017, No 4, pp. 30-35. DOI: 10.14569/IJACSA.2017.080405. DOI öffnenSearch in Google Scholar

14. Lane, S., Q. Gu, P. Lago, I. Richardson. Towards a Framework for the Development of Adaptable Service-Based Applications. – Serv. Oriented Comput. Appl., Vol. 8, 2014, No 3, pp. 239-257. DOI: 10.1007/s11761-013-0136-4. DOI öffnenSearch in Google Scholar

15. Dey, A. K., G. D. Abowd. Towards a Better Understanding of Context and Context-Awareness. – Comput. Syst., Vol. 40, 1999, No 3, pp. 304-307. DOI: 10.1007/3-540-48157-5_29. DOI öffnenSearch in Google Scholar

16. Curum, B., N. Chellapermal, K. Kumar. A Context-Aware Mobile Learning System Using Dynamic Content Adaptation for Personalized Learning. – Emerg. Trends Electr. Electron. Commun. Eng., Vol. 416, 2017, No 1, pp. 379-384. DOI: 10.1007/978-3-319-52171-8. DOI öffnenSearch in Google Scholar

17. Muhammad, S., N. Admodisastro, H. Osman, N. M. Ali. Dynamic Service Adaptation Framework for Context Aware Mobile Cloud Learning Using Semantic-Based Approach. – Int. J. Eng. Technol., Vol. 7, 2018, No (4.31), pp. 182-190. Search in Google Scholar

18. Mizouni, R., M. A. Matar, Z. Al Mahmoud, S. Alzahmi, A. Salah. A Framework for Context-Aware Self-Adaptive Mobile Applications SPL. – Expert Syst. Appl., Vol. 41, 2014, No 16, pp. 7549-7564. DOI: 10.1016/j.eswa.2014.05.049. DOI öffnenSearch in Google Scholar

19. Guermah, H., T. Fissaa, H. Hafiddi, M. Nassar, A. Kriouile. An Ontology Oriented Architecture for Context Aware Services Adaptation. – IJCSI International Journal of Computer Science Issues, Vol. 11, 2014, Issue 2, pp. 24-33. Search in Google Scholar

20. Agarwal, V., P. Jalote. From Specification to Adaptation: An Integrated QoS-Driven Approach for Dynamic Adaptation of Web Service Compositions. – In: Proc. of IEEE 8th Int. Conf. Web Serv. (ICWS’10), 2010, pp. 275-282. DOI: 10.1109/ICWS.2010.39. DOI öffnenSearch in Google Scholar

21. Mohamed, R., T. Perumal, M. N. Sulaiman, N. Mustapha, M. N. S. Zainudin. Modeling Activity Recognition of Multi Resident Using Label Combination of Multi Label Classification in Smart Home. – In: Proc. of AIP Conf., Vol. 1891, 2017, No October. DOI: 10.1063/1.5005427. DOI öffnenSearch in Google Scholar

22. On, G., J. Schmitt, R. Steinmetz. On Availability QoS for Replicated Multimedia Service and Content on Availability QoS for Replicated Multimedia Service and Content. – In: Protoc. Syst. Interact. Distrib. Multimedia, IDMS 2002. Lect. Notes Comput. Sci. Vol. 2515. 2002, Berlin, Heidelberg, Springer, pp. 313-326. DOI: 10.1007/3-540-36166-9. DOI öffnenSearch in Google Scholar

23. Mehdi, M., N. Bouguila, J. Bentahar. Trust and Reputation of Web Services Through QoS Correlation Lens. – IEEE Trans. Serv. Comput., Vol. 9, 2016, No 6, pp. 968-981. DOI: 10.1109/TSC.2015.2426185. DOI öffnenSearch in Google Scholar

24. Gunther, N., R. F. By-Jain. The Practical Performance Analyst. McGraw-Hill, 1998. Search in Google Scholar

25. Qiu, W., Z. Zheng, X. Wang, X. Yang, M. R. Lyu. Reputation-Aware QoS Value Prediction of Web Services Reputation-Aware QoS Value Prediction of Web Services. – In: Proc. of IEEE 10th Int. Conf. Serv. Comput., 2013, No June. DOI: 10.1109/SCC.2013.43. DOI öffnenSearch in Google Scholar

26. Wu, Yan, et al. A Novel Method for Calculating Service Reputation. – IEEE Trans. Autom. Sci. Eng., Vol. 10, 2013, No 3, pp. 634-642. DOI: 10.1109/tase.2013.2238231. DOI öffnenSearch in Google Scholar

27. Sakunthala Prabha, K. S., C. Mahesh, S. P. Raja. An Enhanced Semantic Focused Web Crawler Based on Hybrid String Matching Algorithm. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 105-120.10.2478/cait-2021-0022 Search in Google Scholar

28. Peinado, S., G. Ortiz, J. M. Dodero. A Metamodel and Taxonomy to Facilitate Context-Aware Service Adaptation. – Comput. Electr. Eng., Vol. 44, 2015, pp. 262-279. DOI: 10.1016/j.compeleceng.2015.02.004. DOI öffnenSearch in Google Scholar

29. Al-Yahya, M., R. George, A. Alfaries. Ontologies in e-Learning: Review of the Literature. – Int. J. Softw. Eng. its Appl., Vol. 9, 2015, No 2, pp. 67-84. DOI: 10.14257/ijseia.2015.9.2.07. DOI öffnenSearch in Google Scholar

30. Casals, A., S. Paulo, A. Alves Franco Brandão. Modeling a Mobile Learning Context Data Ontology. – In: Proc. of IEEE World Eng. Educ. Conf., 2017.10.1109/EDUNINE.2017.7918185 Search in Google Scholar

31. Aslam, M., M. A. Auer, S. Shen, J. Herrmann. Expressing Business Process Model as OWL-S Ontologies. – In: Proc. of 2nd Int. Work. Grid Peer-to-Peer Based Work. (GPWW’06) Conjunction with 4th Int. Conf. Bus. Process Manag. (BPM’06), No September, 2006. Search in Google Scholar

32. Meditskos, G., N. Bassiliades. Structural and Role-Oriented Web Service Discovery with Taxonomies in OWL-S. – IEEE Trans. Knowl. Data Eng., Vol. 22, 2010, No 2, pp. 278-290. DOI: 10.1109/TKDE.2009.89. DOI öffnenSearch in Google Scholar

33. Nitzsche, J., T. Van Lessen, D. Karastoyanova, F. Leymann. BPEL for Semantic Web Services (BPEL4SWS). – In: Proc. of OTM Confed. Int. Conf. Move to Meaningful Internet Syst., Part I, 2007, pp. 179-188. DOI: 10.1007/978-3-540-76888-3_37. DOI öffnenSearch in Google Scholar

34. Wang, B., X. Tang. Designing a Self-Adaptive and Context-Aware Service Composition System. – In: Proc. of IEEE Comput. Commun. IT Appl. Conf. (ComComAp’14), 2014, pp. 155-160. DOI: 10.1109/ComComAp.2014.7017188. DOI öffnenSearch in Google Scholar

35. Gurung, R. K., A. Alsadoon, P. W. C. Prasad, A. Elchouemi. Impacts of Mobile Cloud Learning (MCL) on Blended Flexible Learning (BFL). – In: Proc. of International Conference on Information and Digital Technologies (IDT’16), 2016, pp. 108-114. DOI: 10.1109/DT.2016.7557158. DOI öffnenSearch in Google Scholar

36. Wang, M., Y. Chen, M. Jahanzaib Khan. Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud. – J. Educ. Pract., Vol. 7, 2016, p. 6 (online). http://files.eric.ed.gov/fulltext/EJ1099593.pdf Search in Google Scholar

37. Paktinat, S., A. Salajeghe, M. A. Seyyedi, Y. Rastegari. Service-Based Application Adaptation Strategies : A Survey. – International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol. 8, 2014, No 8, pp. 1321-1325. Search in Google Scholar

38. P a p a z o g l o u, M., M. P a r k i n, K. P o h l, A. M e t z g e r. Service Research Challenges and Solutions for the Future Internet. Springer, 2010. Search in Google Scholar

39. Soukkarieh, B., F. Sèdes. Dynamic Services Adaptation to the User’s Context. – In: Proc. of 4th Int. Conf. Internet Web Appl. Serv. (ICIW’09), 2009, No iii, pp. 223-228. DOI: 10.1109/ICIW.2009.39. DOI öffnenSearch in Google Scholar

40. Parra, C., X. Blanc, L. Duchien. Context Awareness for Dynamic Service-Oriented Product Lines. – In: Proc. of 13th Int. Softw. Prod. Line Conf., 2009, pp. 131-140. DOI: 10.1145/1753235.1753254. DOI öffnenSearch in Google Scholar

41. Fredj, M. Dynamic Reconfiguration of Service-Oriented Architectures Manel Fredj to Cite This Version : HAL Id : tel-00491041. – Informatique, Télécommunications et Électronique de Paris, 2010. Search in Google Scholar

42. Bucchiarone, A., A. Marconi, M. Pistore, A. Sirbu. A Context-Aware Framework for Business Processes Evolution. – In: Proc. of IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, 2011, pp. 146-154. DOI: 10.1109/EDOCW.2011.47. DOI öffnenSearch in Google Scholar

43. Bouguessa, A., L. A. Mebarki, B. Boudaa. Context-Aware Adaptation for Sustaining Disaster Management. – In: Proc. of 12th Int. Symp. Program. Syst. (ISPS’15), 2015, pp. 164-173. DOI: 10.1109/ISPS.2015.7244980. DOI öffnenSearch in Google Scholar

44. Adel, A., S. Laborie, P. Roose. Semantic Context-Aware Adaptation Platform Architecture. – Procedia Comput. Sci., Vol. 32, 2014, pp. 959-964. DOI: 10.1016/j.procs.2014.05.518. DOI öffnenSearch in Google Scholar

45. Hind, L., D. Chiadmi, L. Benhlima. How Semantic Technologies Transform e-Government Domain. – Transform. Gov. People, Process Policy, Vol. 8, 2014, No 1, pp. 49-75. DOI: 10.1108/TG-07-2013-0023. DOI öffnenSearch in Google Scholar

46. Bandara, A., T. Payne, D. De Roure, T. Lewis, C. Science. A Semantic Approach for Service Matching in Pervasive Environments. University of Southampton,Tech. Rep. Number ECSTR-IAM07-006, 2007. Search in Google Scholar

47. Ibrahim, N., F. Le Mou. Semantic Service Substitution in Pervasive Environments. – Inderscience Enterp., Ltd, 2015, pp. 1-26. DOI: 10.1504/IJSEM.2014.068244. DOI öffnenSearch in Google Scholar

48. Bekkouche, A., S. M. Benslimane, M. Huchard, C. Tibermacine, F. Hadjila, M. Merzoug. QoS-Aware Optimal and Automated Semantic Web Service Composition with User’s Constraints. – Serv. Oriented Comput. Appl., Vol. 11, 2017, No 2, pp. 183-201. DOI: 10.1007/s11761-017-0205-1. DOI öffnenSearch in Google Scholar

49. Kazhamiakin, R., S. Benbernou, L. Baresi, P. Plebani, M. Uhlig, O. Barais. Adaptation of Service-Based Systems. – Serv. Res. Challenges Solut. LNCS 6500, 2010, pp. 117-156.10.1007/978-3-642-17599-2_5 Search in Google Scholar

50. Salehie, M., L. Tahvildari. Self-Adaptive Software : Landscape and Research Challenges. – ACM Trans. Auton. Adapt. Syst., Vol. 5, 2009, No March, pp. 1-40.10.1145/1516533.1516538 Search in Google Scholar

51. Benlamri, R., X. Zhang. Context-Aware Recommender for Mobile Learners. ABC 2019, 2014, pp. 1-34.10.1186/s13673-014-0012-z Search in Google Scholar

52. Smith, N., T. Clark. A Framework to Model and Measure System Effectiveness. – In: Proc. of 11th ICCRTS Coalit. Command Control Netw. Era, 2004. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo