1. bookVolumen 22 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Uncertainty Aware T2SS Based Dyna-Q-Learning Framework for Task Scheduling in Grid Computing

Online veröffentlicht: 22 Sep 2022
Volumen & Heft: Volumen 22 (2022) - Heft 3 (September 2022)
Seitenbereich: 48 - 67
Eingereicht: 25 Mar 2022
Akzeptiert: 28 Jul 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Qasaimeh, M., R. S. Al-Qassas, S. Aljawarneh. Recent Development in Smart Grid Authentication Approaches: A Systematic Literature Review. – Cybernetics and Information Technologies, Vol. 19, 2019, No 1, pp. 27-52.10.2478/cait-2019-0002 Search in Google Scholar

2. Dabrowski, C. Reliability in Grid Computing Systems. – Concurrency and Computation: Practice and Experience, Vol. 21, 2009, No 8, pp. 927-959.10.1002/cpe.1410 Search in Google Scholar

3. Sadashiv, N., S. D. Kumar. Cluster, Grid and Cloud Computing: A Detailed Comparison. – In: Proc. of 6th International Conference on Computer Science & Education (ICCSE’11), IEEE, August 2011, pp. 477-482.10.1109/ICCSE.2011.6028683 Search in Google Scholar

4. Casanova, H. Distributed Computing Research Issues in Grid Computing. – ACM SIGAct News, Vol. 33, 2002, No 3, pp. 50-70.10.1145/582475.582486 Search in Google Scholar

5. Yu, J., R. Buyya, K. Ramamohanarao. Workflow Scheduling Algorithms for Grid Computing. – In: Proc. of Metaheuristics for Scheduling in Distributed Computing Environments, 2008, Berlin, Heidelberg, Springer, pp. 173-214.10.1007/978-3-540-69277-5_7 Search in Google Scholar

6. Maji, P. K., R. Biswas, A. R. Roy. Soft Set Theory. – Computers & Mathematics with Applications, Vol. 45, 2003, No 4-5, pp. 555-562.10.1016/S0898-1221(03)00016-6 Search in Google Scholar

7. Hayat, K., M. I. Ali, B. Y. Cao, X. P. Yang. A New Type-2 Soft Set: Type-2 Soft Graphs and Their Applications. – Advances in Fuzzy Systems, 2017.10.1155/2017/6162753 Search in Google Scholar

8. Gu, S., T. Lillicrap, I. Sutskever, S. Levine. Continuous Deep q-Learning with Model-Based Acceleration. – In: Proc. of International Conference on Machine Learning, PMLR, June 2016, pp. 2829-2838. Search in Google Scholar

9. Jeaunita, T. J., V. Sarasvathi. A Multi-Agent Reinforcement Learning-Based Optimized Routing for QoS in IoT. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp. 45-61.10.2478/cait-2021-0042 Search in Google Scholar

10. Eng, K., A. Muhammed, M. A. Mohamed, S. Hasan. A Hybrid Heuristic of Variable Neighbourhood Descent and Great Deluge Algorithm for Efficient Task Scheduling in Grid Computing. – European Journal of Operational Research, Vol. 284, 2020, No 1, pp. 75-86.10.1016/j.ejor.2019.12.006 Search in Google Scholar

11. Bhatia, M. K. Task Scheduling in Grid Computing: A Review. – Advances in Computational Sciences and Technology, Vol. 10, 2017 No 6, pp. 1707-1714. Search in Google Scholar

12. Casagrande, L. C., G. P. Koslovski, C. C. Miers, M. A. Pillon. DeepScheduling: Grid Computing Job Scheduler Based on Deep Reinforcement Learning. – In: Proc. of International Conference on Advanced Information Networking and Applications, April 2020, Springer Cham, pp. 1032-1044.10.1007/978-3-030-44041-1_89 Search in Google Scholar

13. Eng, K., A. Muhammed, M. A. Mohamed, S. Hasan. A Hybrid Heuristic of Variable Neighbourhood Descent and Great Deluge Algorithm for Efficient Task Scheduling in Grid Computing. – European Journal of Operational Research, Vol. 284, 2020, No 1, pp. 75-86.10.1016/j.ejor.2019.12.006 Search in Google Scholar

14. Umar, R., A. Pujiyanta. Development of First Come First Serve-Ejecting Based Dynamic Scheduling (FCFS-EDS) Simulation Scheduling Method for MPI Job in a Grid System. – Journal of Engineering and Applied Sciences, Vol. 12, 2017, No 8, pp. 1972-1978. Search in Google Scholar

15. Tang, K., W. Jiang, R. Cui, Y. Wu. A Memory-Based Task Scheduling Algorithm for Grid Computing Based on Heterogeneous Platform and Homogeneous Tasks. – International Journal of Web and Grid Services, Vol. 16, 2020, No 3, pp. 287-304.10.1504/IJWGS.2020.109473 Search in Google Scholar

16. Zeigler, B. P., A. Muzy, E. Kofman. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations. Academic Press, 2018. Search in Google Scholar

17. Zhang, J., G. Ding, Y. Zou, S. Qin, J. Fu. Review of Job Shop Scheduling Research and Its New Perspectives under Industry 4.0. – Journal of Intelligent Manufacturing, Vol. 30, 2019, No 4, pp. 1809-1830.10.1007/s10845-017-1350-2 Search in Google Scholar

18. Nie, R., S. He, F. Liu, X. Luan, H. Shen. Hmm-Based Asynchronous Controller Design of Markovian Jumping Lur’e Systems within a Finite-Time Interval. – IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.10.1109/TSMC.2020.2964643 Search in Google Scholar

19. Bhattacharya, S., S. Badyal, T. Wheeler, S. Gil, D. Bertsekas. Reinforcement Learning for POMDP: Partitioned Rollout and Policy Iteration with Application to Autonomous Sequential Repair Problems. – IEEE Robotics and Automation Letters, Vol. 5, 2020, No 3, pp. 3967-3974.10.1109/LRA.2020.2978451 Search in Google Scholar

20. Heath, A., N. Kunst, C. Jackson, M. Strong, F. Alarid-Escudero, J. D. Goldhaber-Fiebert, H. Jalal. Calculating the Expected Value of Sample Information in Practice: Considerations from 3 Case Studies. – Medical Decision Making, Vol. 40, 2020, No 3, pp. 314-326.10.1177/0272989X20912402 Search in Google Scholar

21. Hironaka, T., M. B. Giles, T. Goda, H. Thom. Multilevel Monte Carlo Estimation of the Expected Value of Sample Information. – SIAM/ASA Journal on Uncertainty Quantification, Vol. 8, 2020, No 3, pp. 1236-1259.10.1137/19M1284981 Search in Google Scholar

22. Klusacek, D., M. Soysal, F. Suter. Alea-Complex Job Scheduling Simulator. – In: 13th International Conference on Parallel Processing and Applied Mathematics, September 2019.10.1007/978-3-030-43222-5_19 Search in Google Scholar

23. Kada, B., H. Kalla. An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization for Hard Real-Time Embedded Systems. – In: Proc. of International Workshop on Distributed Computing for Emerging Smart Networks, October 2019, Springer Cham., pp. 102-117.10.1007/978-3-030-40131-3_7 Search in Google Scholar

24. Toshev, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem-Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44.10.2478/cait-2019-0034 Search in Google Scholar

25. Ivanova-Rohling, V. N., N. Rohling. Evaluating Machine Learning Approaches for Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit Systems. – Cybernetics and Information Technologies, Vol. 20, 2020, No 6, pp. 61-73.10.2478/cait-2020-0061 Search in Google Scholar

26. Eleliemy, A., A. Mohammed, F. M. Ciorba. Exploring the Relation between Two Levels of Scheduling Using a Novel Simulation Approach. – In: Proc. of 16th International Symposium on Parallel and Distributed Computing (ISPDC’17), 2017, pp. 26-33.10.1109/ISPDC.2017.23 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo