1. bookVolumen 22 (2022): Heft 2 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A Rule-Generation Model for Class Imbalances to Detect Student Entrepreneurship Based on the Theory of Planned Behavior

Online veröffentlicht: 23 Jun 2022
Volumen & Heft: Volumen 22 (2022) - Heft 2 (June 2022)
Seitenbereich: 160 - 178
Eingereicht: 19 Oct 2021
Akzeptiert: 12 Mar 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The ability to identify the entrepreneurial potential of students enables higher education institutions to contribute to the economic and social development of a country. Current research trends regarding the detection of student entrepreneurial potential have the greatest challenge in the unequal ratio of datasets. This study proposes a rule-generation model in an imbalanced situation to classify student entrepreneurship based on the Theory of Planned Behavior (TPB). The result is a ruleset that is used for the early detection of student entrepreneurial potential. The proposed method consists of three main stages, namely preprocessing data to classify data based on TPB variables, generating a dataset by clustering and selecting attributes by sampling to balance the data, and finally generating a ruleset. Furthermore, the results of the detecting ruleset have been evaluated with actual data from the student tracer study as ground truth. The evaluation results show high accuracy so that the ruleset can be applied to the higher education environment in the future.

1. Ajzen, I. The Theory of Planned Behavior. – Organ. Behav. Hum. Decis. Process., Vol. 50, 1991, No 2, pp. 179-211. DOI: https://doi.org/10.1016/0749-5978(91)90020-T. Search in Google Scholar

2. Sánchez, V. B., C. A. Sahuquillo. Entrepreneurial Intention Among Engineering Students: The Role of Entrepreneurship Education. – Eur. Res. Manag. Bus. Econ., Vol. 24, 2018, No 1, pp. 53-61. DOI: https://doi.org/10.1016/j.iedeen.2017.04.001. Search in Google Scholar

3. Botsaris, C., V. Vamvaka. Attitude Toward Entrepreneurship: Structure, Prediction from Behavioral Beliefs, and Relation to Entrepreneurial Intention. – J. Knowl. Econ., Vol. 7, 2016, No 2, pp. 433-460. DOI: 10.1007/s13132-014-0227-2. DOI öffnenSearch in Google Scholar

4. Tsordia, C., D. Papadimitriou. The Role of Theory of Planned Behavior on Entrepreneurial Intention of Greek Business Students. – Int. J. Synerg. Res., Vol. 4, 2015.10.17951/ijsr.2015.4.1.23 Search in Google Scholar

5. Utami, C. W. Attitude, Subjective Norms, Perceived Behavior, Entrepreneurship Education and Self-Efficacy toward Entrepreneurial Intention University Student in Indonesia. – Eur. Res. Stud. J., Vol. 20, 2017, pp. 475-495.10.35808/ersj/654 Search in Google Scholar

6. Karimi, S., H. Biemans, K. Mahdei, T. Lans, M. Chizari, M. Mulder. Testing the Relationship between Personality Characteristics, Contextual Factors and Entrepreneurial Intentions in a Developing Country. – Int. J. Psychol., Vol. 52, 2015. DOI: 10.1002/ijop.12209.26334129 DOI öffnenSearch in Google Scholar

7. Maresch, D., R. Harms, N. Kailer, B. Wimmer-Wurm. The Impact of Entrepreneurship Education on the Entrepreneurial Intention of Students in Science and Engineering Versus Business Studies University Programs. – Technol. Forecast. Soc. Change, Vol. 104, 2016, pp. 172-179. DOI: https://doi.org/10.1016/j.techfore.2015.11.006. Search in Google Scholar

8. Hongyi, S., L. C. Tung, L. Bo, W. Y. L. Belle. The Impact of Entrepreneurial Education on Entrepreneurial Intention of Engineering Students in Hong Kong. – Manag. Decis., Vol. 55, January 2017, No 7, pp. 1371-1393. DOI: 10.1108/MD-06-2016-0392. DOI öffnenSearch in Google Scholar

9. Rijati, N., D. Purwitasari, S. Sumpeno, M. H. Purnomo. A Decision Making and Clustering Method Integration Based on the Theory of Planned Behavior for Student Entrepreneurial Potential Mapping in Indonesia. – Int. J. Intell. Eng. Syst., Vol. 13, 2020, No 4. DOI: 10.22266/ijies2020.0831.12. DOI öffnenSearch in Google Scholar

10. Thammasiri, D., D. Delen, P. Meesad, N. Kasap. A Critical Assessment of Imbalanced Class Distribution Problem: The Case of Predicting Freshmen Student Attrition. – Expert Syst. Appl., Vol. 41, 2014, No 2, pp. 321-330. DOI: 10.1016/j.eswa.2013.07.046. DOI öffnenSearch in Google Scholar

11. Márquez-Vera, C., A. Cano, C. Romero, S. Ventura. Predicting Student Failure at School Using Genetic Programming and Different Data Mining Approaches with High Dimensional and Imbalanced Data. – Appl. Intell., Vol. 38, 2013, No 3, pp. 315-330. DOI: 10.1007/s10489-012-0374-8. DOI öffnenSearch in Google Scholar

12. Mathews, L. M., H. Seetha. On Improving the Classification of Imbalanced Data. – Cybernetics and Information Technologies, Vol. 17, 2017, No 1, pp. 45-62.10.1515/cait-2017-0004 Search in Google Scholar

13. Xiao, J., L. Xie, C. He, X. Jiang. Dynamic Classifier Ensemble Model for Customer Classification with Imbalanced Class Distribution. – Expert Syst. Appl., Vol. 39, 2012, No 3, pp. 3668-3675. DOI: https://doi.org/10.1016/j.eswa.2011.09.059. Search in Google Scholar

14. Elreedy, D., A. F. Atiya. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for Handling Class Imbalance. – Inf. Sci., Vol. 505, 2019, pp. 32-64. DOI: https://doi.org/10.1016/j.ins.2019.07.070. Search in Google Scholar

15. Ajzen, I., M. Fishbein. The Influence of Attitudes on Behavior. – In: The Handbook of Attitudes. Vol. 173. 2005, pp. 173-221. Search in Google Scholar

16. Khefacha, I., L. Belkacem. Modeling Entrepreneurial Decision-Making Process Using Concepts from Fuzzy Set Theory. – J. Glob. Entrep. Res., Vol. 5, 2015, No 1, p. 13. DOI: 10.1186/s40497-015-0031-x. DOI öffnenSearch in Google Scholar

17. Shovon, M. H. I., M. Haque. An Approach of Improving Student’s Academic Performance by Using k-Means Clustering Algorithm and Decision Tree. – Int. J. Adv. Comput. Sci. Appl., Vol. 3, 2012. DOI: 10.14569/IJACSA.2012.030824. DOI öffnenSearch in Google Scholar

18. de Morais, A. M., J. M. F. R. Araújo, E. B. Costa. Monitoring Student Performance Using Data Clustering and Predictive Modelling. – In: Proc. of IEEE Frontiers in Education Conference (FIE) Proceedings, Oct. 2014, pp. 1-8, DOI: 10.1109/FIE.2014.7044401. DOI öffnenSearch in Google Scholar

19. Rijati, N., S. Sumpeno, M. H. Purnomo. Multi-Attribute Clustering of Student’s Entrepreneurial Potential Mapping Based on Its Characteristics and the Affecting Factors: Preliminary Study on Indonesian Higher Education Database. – In: Proc. of 10th International Conference on Computer and Automation Engineering, 2018, pp. 11-16. DOI: 10.1145/3192975.3193014. DOI öffnenSearch in Google Scholar

20. Chawla, N. V., K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic Minority Over-Sampling Technique. – J. Artif. Intell. Res., Vol. 16, 2002, No February 2017, pp. 321-357. DOI: 10.1613/jair.953. DOI öffnenSearch in Google Scholar

21. Lemaitre, G., F. Nogueira, C. K. Aridas. Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. – J. Mach. Learn. Res., Vol. 18, January 2017, No 1, pp. 559-563. Search in Google Scholar

22. Batista, G. E. A. P. A., R. C. Prati, M. C. Monard. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. – SIGKDD Explor. Newsl., Vol. 6, 2004, No 1, pp. 20-29. DOI: 10.1145/1007730.1007735. DOI öffnenSearch in Google Scholar

23. Wilson, D. L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. – IEEE Trans. Syst. Man Cybern., Vol. 2, 1972, No 3, pp. 408-421. DOI: 10.1109/TSMC.1972.4309137. DOI öffnenSearch in Google Scholar

24. Tomek, I. An Experiment with the Edited Nearest-Neighbor Rule. – IEEE Trans. Syst. Man. Cybern., Vol. SMC-6, 1976, No 6, pp. 448-452. DOI: 10.1109/TSMC.1976.4309523. DOI öffnenSearch in Google Scholar

25. Gowda, K., G. Krishna. The Condensed Nearest Neighbor Rule Using the Concept of Mutual Nearest Neighborhood (Corresp.). – IEEE Trans. Inf. Theory, Vol. 25, Jul. 1979, No 4, pp. 488-490. DOI: 10.1109/TIT.1979.1056066. DOI öffnenSearch in Google Scholar

26. Kubat, M. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. – In: Proc. of 14th Int. Conf. Mach. Learn., 2000. Search in Google Scholar

27. Smith, M. R., T. Martinez, C. Giraud-Carrier. An Instance Level Analysis of Data Complexity. – Mach. Learn., Vol. 95, 2014, No 2, pp. 225-256. DOI: 10.1007/s10994-013-5422-z. DOI öffnenSearch in Google Scholar

28. Rijati, N., S. Sumpeno, M. H. Purnomo. Attribute Selection Techniques to Clustering the Entrepreneurial Potential of Student Based on Academic Behavior. – In: Proc. of IEEE Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl. CIVEMSA 2019 – Proc., 2019. DOI: 10.1109/CIVEMSA45640.2019.9071597. DOI öffnenSearch in Google Scholar

29. Yuhana, U., et al. A Rule-Based Expert System for Automatic Question Classification in Mathematics Adaptive Assessment on Indonesian Elementary School Environment. – Int. J. Innov. Comput. Inf. Control, Vol. 15, 2019, pp. 143-161. DOI: 10.24507/ijicic.15.01.143. DOI öffnenSearch in Google Scholar

30. Prachuabsupakij, W., P. Doungpaisan. Matching Preprocessing Methods for Improving the Prediction of Student’s Graduation. – In: Proc. of 2nd IEEE International Conference on Computer and Communications (ICCC), Oct. 2016, pp. 33-37. DOI: 10.1109/CompComm.2016.7924659. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo