1. bookVolumen 22 (2022): Heft 2 (June 2022)
13 Mar 2012
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Enhancing the Speed of the Learning Vector Quantization (LVQ) Algorithm by Adding Partial Distance Computation

Online veröffentlicht: 23 Jun 2022
Volumen & Heft: Volumen 22 (2022) - Heft 2 (June 2022)
Seitenbereich: 36 - 49
Eingereicht: 01 Mar 2022
Akzeptiert: 29 Mar 2022
13 Mar 2012
4 Hefte pro Jahr

Learning Vector Quantization (LVQ) is one of the most widely used classification approaches. LVQ faces a problem as when the size of data grows large it becomes slower. In this paper, a modified version of LVQ, which is called PDLVQ is proposed to accelerate the traditional version. The proposed scheme aims to avoid unnecessary computations by applying an efficient Partial Distance (PD) computation strategy. Three different benchmark datasets are used in the experiments. The comparisons have been done between LVQ and PDLVQ in terms of runtime and in result, it turns out that PDLVQ shows better efficiency than LVQ. PDLVQ has achieved up to 37% efficiency in runtime compared to LVQ when the dimensions have increased. Also, the enhanced algorithm (PDLVQ) shows clear enhancement to decrease runtime when the size of dimensions, the number of clusters, or the size of data becomes increased compared with the traditional one which is LVQ.

1. Artelt, A., B. Hammer. Efficient Computation of Counterfactual Explanations of LVQ Models. – arXiv preprint arXiv:1908.00735, 2019. Search in Google Scholar

2. Hashem, I. A. T., I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan. The Rise of “Big Data” on Cloud Computing: Review and Open Research Issues. – Information Systems, Vol. 47, 2015, pp. 98-115.10.1016/j.is.2014.07.006 Search in Google Scholar

3. Huang, W., H. Wang, Y. Zhang, S. Zhang. A Novel Cluster Computing Technique Based on Signal Clustering and Analytic Hierarchy Model Using Hadoop. – Cluster Computing, Vol. 22, 2019, No 6, pp. 13077-13084.10.1007/s10586-017-1205-9 Search in Google Scholar

4. Choi, T. M., S. W. Wallace, Y. Wang. Big Data Analytics in Operations Management. – Production and Operations Management, Vol. 27, 2018, No 10, pp. 1868-1883.10.1111/poms.12838 Search in Google Scholar

5. Akhiat, Y., Y. Manzali, M. Chahhou, A. Zinedine. A New Noisy Random Forest Based Method for Feature Selection. – Cybernetics and Information Technologies, Vol. 21, 2021, No 2, pp. 10-28.10.2478/cait-2021-0016 Search in Google Scholar

6. Tchamova, A., J. Dezert, N. Bocheva, P. Konstantinova, B. Genova, M. Stefanova. A Study on Human Learning Ability during Classification of Motion and Colour Visual Cues and Their Combination. – Cybernetics and Information Technologies, Vol. 21, 2021, No 1, pp. 73-86.10.2478/cait-2021-0006 Search in Google Scholar

7. Madhumala, R. B., H. Tiwari, V. C. Devaraj. Virtual Machine Placement Using Energy Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information Technologies, Vol. 21, 2021, No 1, pp. 62-72.10.2478/cait-2021-0005 Search in Google Scholar

8. Kumar, K. Dinesh, E. Umamaheswari. HPCWMF: A Hybrid Predictive Cloud Workload Management Framework Using Improved LSTM Neural Network. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 55-73.10.2478/cait-2020-0047 Search in Google Scholar

9. Yazici, M., S. Basurra, M. M. Gaber. Edge Machine Learning: Enabling Smart Internet of Things Applications. – Big Data and Cognitive Computing, Vol. 2, 2018, No 3, pp. 26.10.3390/bdcc2030026 Search in Google Scholar

10. Kaden, M., M. Lange, D. Nebel, M. Riedel, T. Geweniger, T. Villmann. Aspects in Classification Learning – Review of Recent Developments in Learning Vector Quantization. – Foundation of Computing and Decision Sciences, Vol. 39, 2014, No 2, pp. 79-105.10.2478/fcds-2014-0006 Search in Google Scholar

11. Wu, K. L., M. S. Yang. Alternative Learning Vector Quantization. – Pattern Recognition, Vol. 39, 2006, No 3, pp. 351-362.10.1016/j.patcog.2005.09.011 Search in Google Scholar

12. Melin, P., J. Amezcua, F. Valdez, O. Castillo. A New Neural Network Model Based on the LVQ Algorithm for Multi-Class Classification of Arrhythmias. – Information Sciences, Vol. 279, 2014, pp. 483-497.10.1016/j.ins.2014.04.003 Search in Google Scholar

13. Devi, K. J., G. B., Moulika, K. Sravanthi, K. M. Kumar. Prediction of Medicines Using LVQ Methodology. – In: Proc. of International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS’17), IEEE, 2017, pp. 388-391.10.1109/ICECDS.2017.8390162 Search in Google Scholar

14. Blaiech, A. G., K. Bean Khalfa, M. Boubaker, M. H. Bedoui. LvQ Neural Network Optimized Implementation on FPGA Devices with Multiple-Wordlength Operations for Real-Time Systems. – Neural Computing and Applications, Vol. 29, 2018, No 2, pp. 509-528.10.1007/s00521-016-2465-7 Search in Google Scholar

15. Putra, D. S., Y. U. W. Weru. Pattern Recognition of Electromyography (EMG) Signal for Wrist Movement Using Learning Vector Quantization (LVQ). – In: Proc. of IOP Conference Series: Materials Science and Engineering, Vol. 506, 2019, No 1, pp. 12-20. Search in Google Scholar

16. Sheikh Abdullah, S. N. H., F. A. Bohani, B. H. Nayef, S. Sahran, O. Al Akash, R. Iqbal Hussain, F. Ismail. Round Randomized Learning Vector Quantization for Brain Tumor Imaging. – Computational and Mathematical Methods in Medicine, 2016.10.1155/2016/8603609496798627516807 Search in Google Scholar

17. Biehl, M., A. Ghosh, B. Hammer. Learning Vector Quantization: The Dynamics of Winner-Takes-All Algorithms. – Neurocomputing, Vol. 69, 2006, No 7-9, pp. 660-670.10.1016/j.neucom.2005.12.007 Search in Google Scholar

18. Ghosh, A., M. Biehl, B. Hammer. Performance Analysis of LVQ Algorithms: A Statistical Physics Approach. – Neural Networks, Vol. 19, 2006, No 6-7, pp. 817-829.10.1016/j.neunet.2006.05.01016781845 Search in Google Scholar

19. Mokbel, B., B. Paassen, F. M. Schleif, B. Hammer. Metric Learning for Sequences in Relational LVQ. – Neurocomputing, Vol. 169, 2015, pp. 306-322.10.1016/j.neucom.2014.11.082 Search in Google Scholar

20. Tzanakou, E. M. Supervised and Unsupervised Pattern Recognition: Feature Extraction and Computational Intelligence. CRC Press, 2017. Search in Google Scholar

21. Kohonen, T. Improved Versions of Learning Vector Quantization. – In: Proc. of IJCNN International Joint Conference on Neural Networks, IEEE, 1990, pp. 545-550.10.1109/IJCNN.1990.137622 Search in Google Scholar

22. Naoum, R. S., Z. N. Al-Sultani. Learning Vector Quantization (LVQ) and k-Nearest Neighbor for Intrusion Classification. – World of Computer Science and Information Technology Journal (WCSIT), Vol. 2, 2012, No 3, pp. 105-109. Search in Google Scholar

23. Leung, K. M. Learning Vector Quantization. Department of Computer and Information Science, Polytechnic University, 2009. Search in Google Scholar

24. Pandya, A. S., R. B. Macy. Pattern Recognition with Neural Networks in C++. CRC Press, 1995. Search in Google Scholar

25. Sainin, M. S., R. Alfred, F. Ahmad. Ensemble Meta Classifier with Sampling and Feature Selection for Data with Imbalance Multiclass Problem. – Journal of Information and Communication Technology, Vol. 20, 2021, No 2, pp. 103-133.10.32890/jict2021.20.2.1 Search in Google Scholar

26. Kumar, N., D. Kumar. An Improved Grey Wolf Optimization-Based Learning of Artificial Neural Network for Medical Data Classification. – Journal of Information and Communication Technology, Vol. 20, 2021, No 2, pp. 213-248.10.32890/jict2021.20.2.4 Search in Google Scholar

27. Black, T., D. B. Fogel, Z. Michalewicz. Evolutionary Computation 1: Basic Algorithms and Operators. CRC Press, 2018.10.1201/9781482268713 Search in Google Scholar

28. Kim, K.-S., I. Han. The Cluster-Indexing Method for Case-Based Reasoning Using Self-Organizing Maps and Learning Vector Quantization for Bond Rating Cases. – Expert Systems with Applications, Vol. 21, 2001, No 3, pp. 147-156.10.1016/S0957-4174(01)00036-7 Search in Google Scholar

29. AbuAlghanam, O., L. Albdour, O. Adwan. Multimodal Biometric Fusion Online Handwritten Signature Verification Using Neural Network and Support Vector Machine. – Transactions, Vol. 7, 2021, No 8. Search in Google Scholar

30. Abualghanam, O., M. Qatawneh, W. Almobaideen. A Survey of Key Distribution in the Context of Internet of Things. – Journal of Theoretical and Applied Information Technology, Vol. 97, 2019, No 22, pp. 3217-3241. Search in Google Scholar

31. Salman, M., D. Husna, S. G. Apriliani, J. G. Pinem. Anomaly Based Detection Analysis for Intrusion Detection System Using Big Data Technique with Learning Vector Quantization (LVQ) and Principal Component Analysis (PCA). – In: Proc. of International Conference on Artificial Intelligence and Virtual Reality, 2018, pp. 20-23.10.1145/3293663.3293683 Search in Google Scholar

32. Arulkumar, V., P. Vivekanandan. An Intelligent Technique for Uniquely Recognising Face and Finger Image Using Learning Vector Quantisation (LVQ) Based Template Key Generation. – International Journal of Biomedical Engineering and Technology, Vol. 26, 2018, No 3-4, pp. 237-249.10.1504/IJBET.2018.089951 Search in Google Scholar

33. Mawengkang, H., S. Efendi, S. Hybrid Learning Vector Quantization (LVQ) Algorithm on Face Recognition Using Webcam. – In: Proc. of IOP Conference Series: Materials Science and Engineering, Vol. 420, 2018, No 1, pp. 012126. Search in Google Scholar

34. Yuniarno, E. M., M. H. Purnomo. Indonesian Batik Image Classification Using Statistical Texture Feature Extraction Gray Level Co-Occurrence Matrix (GLCM) and Learning Vector Quantization (LVQ). – Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 10, 2018, No 2-3, pp. 67-71. Search in Google Scholar

35. Sardogan, M., A. Tuncer, Y. Ozen. Plant Leaf Disease Detection and Classification Based on CNN with LVQ Algorithm. – In: Proc. of 3rd International Conference on Computer Science and Engineering (UBMK), IEEE, 2018, pp. 382-385.10.1109/UBMK.2018.8566635 Search in Google Scholar

36. Amezcua, J., P. Melin, O. Castillo. New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic. Springer, 2018.10.1007/978-3-319-73773-7 Search in Google Scholar

37. Paliwal, K. K., V. Ramasubramanian. Effect of Ordering the Codebook on the Efficiency of the Partial Distance Search Algorithm for Vector Quantization. – IEEE Transactions on Communications, Vol. 37, 1989, No 5, pp. 538-540.10.1109/26.24608 Search in Google Scholar

38. Van Veen, R., V. Gurvits, R. V. Kogan, S. K. Meles, G. J. de Vries, R. J. Renken, M. Biehl. An Application of Generalized Matrix Learning Vector Quantization in Neuroimaging. – Computer Methods and Programs in Biomedicine, Vol. 197, 2020, pp. 105708.10.1016/j.cmpb.2020.10570832977181 Search in Google Scholar

39. Nowaková, J., M. Prílepok, V. Snášel. Medical Image Retrieval Using Vector Quantization and Fuzzy S-Tree. – Journal of Medical Systems, Vol. 41, 2017, No 2, pp. 1-16.10.1007/s10916-016-0659-2590252527981409 Search in Google Scholar

40. Yang, C. H., S. J. Wang. Accelerating VQ-Based Codeword Search on the Basis of Partial Search Strategy. – Computer Standards & Interfaces, Vol. 28, 2005, No 2, pp. 231-240.10.1016/j.csi.2004.12.007 Search in Google Scholar

41. Al-Zoubi, M., A. Hudaib, A. Huneiti, B. Hammo. New Efficient Strategy to Accelerate k-Means Clustering Algorithm. – American Journal of Applied Sciences, Vol. 5, 2008, No 9, pp. 1247-1250.10.3844/ajassp.2008.1247.1250 Search in Google Scholar

42. Kim, B. A Fast k-Prototypes Algorithm Using Partial Distance Computation. – Symmetry, Vol. 9, 2017, No 4, pp. 58.10.3390/sym9040058 Search in Google Scholar

43. Shafronenko, A., A. Dolotov, Y. Bodyanskiy, G. Setlak. Fuzzy Clustering of Distorted Observations Based on Optimal Expansion Using Partial Distances. – In: Proc. of 2nd IEEE International Conference on Data Stream Mining & Processing (DSMP’18), IEEE, 2018, pp. 327-330.10.1109/DSMP.2018.8478489 Search in Google Scholar

44. Blake, C., C. Merz. UCI Repository of Machine Learning Databases. Bib Sonomy, 1998. Search in Google Scholar

45. http://www.ics.uci.edu/~mlearn/MLRepository Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo