Uneingeschränkter Zugang

Design of a Multifunctional Operating Station Based on Augmented Reality (MOSAR)


Zitieren

1. Ivanova, V., A. Boneva, Y. Doshev, S. Ivanov, P. Vasilev. Multifunctional Operating Station Based on Tcl/Tk and its Applications. – In: Proc. of 6th IEEE International Conference “Big Data, Knowledge and Control Systems Engineering” (BdKCSE’19), 27 February 2020, pp. 1-7, E ISBN: 978-1-7281-6481-6, Print on Demand (PoD) ISBN: 978-1-7281-6482-3, DOI: 10.1109/BdKCSE48644.2019.9010662.10.1109/BdKCSE48644.2019.9010662 Search in Google Scholar

2. Vasilev, P., E. Janev, G. Elenkov. Communication Interface Module for WEB – Based Control – In: Proc. of VIII International Congress “Machines, Technolоgies, Materials”, Year XIX, Vol. 3, 2011, pp. 79-82. Print ISSN: 1310-3946 (in Bulgarian). Search in Google Scholar

3. Mountney, P., J. Fallert, S. Nicolau, L. Soler, W. P. Mewes. An Augmented Reality Framework for Soft Tissue Surgery – Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. – Lecture Notes in Computer Science, 2014, pp. 423-431. ISBN: 978-3-319-10403-4, 8673, DOI:10.1007/978-3-319-10404-1_53.10.1007/978-3-319-10404-1_5325333146 Search in Google Scholar

4. Ha, H.-G., J. Hong. Augmented Reality in Medicine – J. Hanyang Med Rev, Vol. 36, 2016, No 4, pp. 242-247. pISSN 1738-429X, eISSN 2234-4446. https://doi.org/10.7599/hmr.2016.36.4.24210.7599/hmr.2016.36.4.242 Search in Google Scholar

5. Sheng, B., S. Masood, Y. Jung. Chapter Twenty, Virtual and Augmented Reality in Medicine – Biomedical Information Technology, Elsevier Inc, 2020, pp. 673-686. ISBN 978-0-12-816034-3. https://doi.org/10.1016/B978-0-12-816034-3.00020-110.1016/B978-0-12-816034-3.00020-1 Search in Google Scholar

6. Ilchev, S., Z. Ilcheva. Internet-of-Things Communication Protocol for Low-Cost Devices in Heterogeneous Wireless Networks. – In: Proc. of 18th International Conference on Computer Systems and Technologies (CompSysTech’7), Ruse, Bulgaria, 23-24 June, 2017, ACM ICPS Vol. 1369, pp. 272-279. ISBN: 978-1-4503-5234-5, DOI: 10.1145/3134302.3134329.10.1145/3134302.3134329 Search in Google Scholar

7. Ilchev, S., Z. Ilcheva. Thermoelectric Cooling Driver for Laser Projection Systems – In: Proc. of Big Data, Knowledge and Control Systems Engineering Conference (BdKCSE’19), 21-22 November 2019, Sofia, Bulgaria, pp. 1-9, IEEE. Electronic ISBN: 978-1-7281-6481-6, Print on Demand(PoD) ISBN: 978-1-7281-6482-3. DOI: 10.1109/BdKCSE48644.2019.9010606.10.1109/BdKCSE48644.2019.9010606 Search in Google Scholar

8. Borissova, D., I. Mustakerov. Methodology for Design of Web-Based Laparoscopy e-Training System. – European Journal of Open, Distance and E-Learning, ERIC Number: EJ954909, 2011, No 2, pp. 1-9. ISSN-1027-5207. https://eric.ed.gov/?id=EJ954909 Search in Google Scholar

9. Rokhsaritalemi, S., A. Sadeghi-Niaraki, S.-M. Choi. A Review on Mixed Reality: Current Trends, Challenges and Prospects – J. MDPI, Appl. Sci, Vol. 10, 2020, No 636, pp. 1-26. https://doi.org/10.3390/app1002063610.3390/app10020636 Search in Google Scholar

10. Jagadeesan, J., B. Xavier, F. King, A. Hosny, D. Black, S. Pieper, A. Tavakkoli. A Novel Mixed Reality Navigation System for Laparoscopy Surgery – Med Image Comput Comput Assist Interv, Vol. 11073, September 2018, pp. 72-80. DOI: 10.1007/978-3-030-00937-3_9.10.1007/978-3-030-00937-3_9651286731098598 Search in Google Scholar

11. Ajey, L. Virtual Reality and Its Military Utility. – Journal of Ambient Intelligence and Humanized Computing, Vol. 4, 2013, No 1, Springer, pp. 17-26. DOI: 10.1007/s12652-011-0052-4.10.1007/s12652-011-0052-4 Search in Google Scholar

12. Liu, X., J. Zhang, G. Hou, Z. Wang. Virtual Reality and Its Application in Military. – In: Proc. of 2nd International Symposium on Resource Exploration and Environmental Science, IOP Conf. Series: Earth and Environmental Science,Vol. 170, 032155, IOP Publishing, 2018, pp. 1-8. DOI: 10.1088/1755-1315/170/3/032155.10.1088/1755-1315/170/3/032155 Search in Google Scholar

13. Adrian, I., D. Trandabăț. Enhancing the Attractiveness of Learning through Augmented Reality. – In: Proc. of International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES2018, 3-5 September 2018, Belgrade, Serbia, Procedia Computer Science, Vol. 126, Elsevier, 2018, pp. 166-175. https://www.sciencedirect.com/science/article/pii/S187705091831194310.1016/j.procs.2018.07.220 Search in Google Scholar

14. Popchev, I. P., D. A. Orozova. Towards Big Data Analytics in the e-Learning Space. – Cybernetics and Information Technologies, Vol. 19, 2019, No 3, pp. 16-24. DOI: 10.2478/cait-2019-0023. http://www.cit.iit.bas.bg/CIT_2019/v-19-3/10341-Vol-19_Issue_3-02_paper.pdf.10.2478/cait-2019-0023 Search in Google Scholar

15. Ma, Z., W. Liu. Data Receiving Method Based on Multimedia Timing in RealTime System – Cybernetics and Information Technologies, Vol. 17, 2017, No 1, pp. 126-134. DOI: 10.1515/cait-2017-0010. http://www.cit.iit.bas.bg/CIT_2017/v-17-1/10_paper.pdf10.1515/cait-2017-0010 Search in Google Scholar

16. Yi, Y., X. Hu. Robot Simultaneous Localization and Mapping Based on Self-Detected Waypoint – Cybernetics and Information Technologies, Vol. 16, 2016, No 2, pp. 212-221. DOI: 10.1515/cait-2016-0031. http://www.cit.iit.bas.bg/CIT_2016/v-16-2/10341-Vol-16_Issue_2-16_paper.pdf10.1515/cait-2016-0031 Search in Google Scholar

17. Mojtaba, N., A. Heydarian, V. Balali, K. Han. Trend Analysis on Adoption of Virtual and Augmented Reality in the Architecture, Engineering, and Construction Industry. – MDPI, Vol. 5, 2020, Issue 1, 26, pp. 1-18. https://doi.org/10.3390/data501002610.3390/data5010026 Search in Google Scholar

18. https://www.uml.org/what-is-uml.htm Search in Google Scholar

19. Welch, B. B., K. Jones, J. Hobbs. Practical Programming in Tcl and Tk, Prentice Hall Professional. – Computers, 2003, pp. 1-882. Search in Google Scholar

20. http://www.tcl.tk/ Search in Google Scholar

21. Ivanova, V., D. Bachvarov, A. Boneva, R. Andreev, N. Dobrinkova. System for Analysis and Control of Mechanical Properties of Biological Tissues, Utility Model. Registration No 3323/31.10.2019. p 6293 (in Bulgarian). www.bpo.bg/images/stories/buletini/binder-2019-11-15.pdf Search in Google Scholar

22. Ivanova, V., D. Bachvarov, A. Boneva. An Advanced Robot System for Diagnostic and Therapeutics Tasks with Application in Laparoscopic Surgery. – Journal of Computer Engineering and Information Technology, Vol. 7, 2018, Issue 1, pp. 1-9. SciTechnol, ISSN: 2412-8856 (Online), DOI 10.4172 /2324-9307.1000202. Search in Google Scholar

23. Ivanova, V.-A.-G. Laparoscopic Executive Tools for Robots. PhD Thesis, Scientific Field: Mechanical Engineering, Professional Area: Scientific Specialty Robots and Manipulators, Institute of Robotics, Bulgarian Academy of Sciences, Scientific Advisor: Professor Dr. Veselin Pavlov, Asoc. Professor Dr. Ivan Chavdarov, Sofia 2020, pp. 1-136 (in Bulgarian). http://ir.bas.bg/competitions/atanasova/avto_ata.pdf Search in Google Scholar

24. Itamiya, T., T. Iwai, T. Kaneko. The Holographic Human for Surgical Navigation Using Microsoft HoloLens. – J. EPiC Series in Engineering, Vol. 1, 2018, pp. 26-30. https://doi.org/10.29007/wjjx10.29007/wjjx Search in Google Scholar

25. Kim, H. S., N. Hong, M. Kim, S. G. Yoon, H. W. Yu, H.-J., Kong, S.-J. Kim, Y. J. Chai, H. J. Choi, J. Y. Choi, K. E. Lee, S. Kim, H. C. Kim. Application of a Perception Neuron® System in Simulation-Based Surgical Training. – Journal of Clinical Medicine, Vol. 8(1), 2019, No 124, pp. 1-11. ISSN: 2077-0383. https://doi.org/10.3390/jcm801012410.3390/jcm8010124635218530669562 Search in Google Scholar

26. Lee, D., J. W. Yi, J. Hong, Y. J. Chai, H. C. Kim, H.-J. Kong. Augmented Reality to Localize Individual Organ in Surgical Procedure. – Health Information Research, Vol. 24, October 2018, No 4, pp. 394-401. DOI: 10.4258/hir.2018.24.4.394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230535/pdf/hir-24-394.pdf10.4258/hir.2018.24.4.394623053530443429 Search in Google Scholar

27. Faure, F., C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, S. Coti. SOFA: A Multi-Model Framework for Interactive Physical Simulation. – Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials Book Series, Vol. 11, Springer, Berlin, Heidelberg, 2012, pp 283-321. Online ISBN: 978-3-642-29014-5, DOI: https://doi.org/10.1007/8415_2012_125.10.1007/8415_2012_125 Search in Google Scholar

28. https://developers.google.com/ar/discover Search in Google Scholar

29. Akçayır, M., G. Akçayır. Advantages and Challenges Associated with Augmented Reality for Education: A Systematic Review of the Literature. – J. Educational Research Review, Vol. 20, February 2017, pp. 1-11. DOI:10.1016/j.edurev.2016.11.002.10.1016/j.edurev.2016.11.002 Search in Google Scholar

30. Belhaj, S. K., E. Ghribi, Y. Labyed, M. N. Saidi, A. Tamtaoui, N. Kaabouch. Mixed-Reality Aided System for Glioblastoma Resection Surgery Using Microsoft HoloLens. – IEEE Xplore, IEEE, 2019, pp. 079-084. e-ISSN: 2154-0373, e-ISBN: 978-1-7281-0927-5, DOI: 10.1109/EIT.2019.8833738.10.1109/EIT.2019.8833738 Search in Google Scholar

31. Pfeiffer, M., C. Riediger, S. Leger, J.-P. K¨uhn, D. Seppelt, R.-T. Hoffmann, J. Weitz, S. Speidel. Non-Rigid Volume to Surface Registration Using a Data-Driven Biomechanical Model. – Computer Science, Engineering ArXiv, 2020, arXiv:2005.14695v1. https://arxiv.org/pdf/2005.14695.pdf Search in Google Scholar

32. Mendizabal, A., E. Tagliabue, T. Hoellinger, J.-N. Brunet, S. Nikolaev, S. Cotin. Data-Driven Simulation for Augmented Surgery. Bilen Emek Abali, Ivan Giorgio. – Developments and Novel Approaches in Biomechanics and Metamaterials, Vol. 132, 2020, pp. 71-96. 978-3-030-50464-9. ff10.1007/978-3-030-50464-9ff. https://hal.inria.fr/hal-02538101/document10.1007/978-3-030-50464-9_5 Search in Google Scholar

33. Pellicer-Valero, O. J., M. J. Rupérez, S. Martínez-Sanchis, J. D. Martín-Guerrero. Real-Time Biomechanical Modeling of the Liver Using Machine Learning Models Trained on Finite Element Method Simulations – J. Expert Systems with Applications, Vol. 143, 2019, No 1, Elsevier, Ltd., pp. 1-12. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2019.11308310.1016/j.eswa.2019.113083 Search in Google Scholar

34. https://library.vuforia.com/getting-started/overview.html Search in Google Scholar

35. Schmid, C., R. Mohr, C. Bauckhage. Evaluation of Interest Point Detectors. International. – Journal of Computer Vision, Springer Verlag, Vol. 37, 2000, No 2, pp. 151-172. ff10.1023/A:1008199403446ff. ffinria-00548302.10.1023/A:1008199403446 Search in Google Scholar

36. Fleet, D. J., Y. Weiss. Optical Flow Estimation. – Handbook of Mathematical Models in Computer Vision, Springer, 2006, pp. 237-257. ISBN: 978-0-387-26371-7.10.1007/0-387-28831-7_15 Search in Google Scholar

37. Jurado, S., Garrido, R. Muñoz-Salinas F. J., Madrid-Cuevas M. J., Marín-Jiménez. Automatic Generation and Detection of Highly Reliable Fiducial Markers under Occlusion. – J. Pattern Recognition, Vol. 47, June 2014, Issue 6, pp. 2280-2292.10.1016/j.patcog.2014.01.005 Search in Google Scholar

38. Talbot, H., N. Haouchine, I. Peterlik, J. Dequidt, C. Duriez, H. Delingette, S. Cotin. Surgery Training, Planning and Guidance Using the SOFA Framework. – Eurographics, HAL Id: hal-01160297, Zurich, Switzerland, May 2015, pp. 1-5. https://hal.inria.fr/hal-01160297/document Search in Google Scholar

39. Boubaker, M., M. Haboussi, J.-F. Ganghoffer, P. Aletti. Finite Element Simulation of Interactions between Pelvic Organs: Predictive Model of the Prostate Motion in the Context of Radiotherapy. – Journal of Biomechanics, Vol. 42, Elsevier Ltd, 2009, pp. 1862-1868. ISSN: 0021-9290, DOI: 10.1016/j.jbiomech.2009.05.022.10.1016/j.jbiomech.2009.05.02219559437 Search in Google Scholar

40. Fouard, C., A. Deram, Y. Keraval, E. Promayon. CamiTK: A Modular Framework Integrating Visualization – Image Processing and Biomechanical Modeling, Studies in Mechanobiology. – Tissue Engineering and Biomaterials, Vol. 11, Springer, Berlin, Heidelberg, 2012, pp. 283-321. Online ISBN: 978-3-642-29014-5, DOI: 10.1007/8415_2012_118. https://link.springer.com/chapter/10.1007/8415_2012_125 Search in Google Scholar

41. Khor, W. S., B. Baker, K. Amin, A. Chan, K. Patel, J. Wong. Augmented and Virtual Reality in Surgery – the Digital Surgical Environment: Applications, Limitations and Legal Pitfalls. – J. Annals of Translational Medicine, Vol. 4, December 2016, No 23, pp. 1-10. DOI: 10.21037/atm.2016.12.23. https://pubmed.ncbi.nlm.nih.gov/28090510/10.21037/atm.2016.12.23522004428090510 Search in Google Scholar

42. Makhataeva, Z., H. A. Varol. Augmented Reality for Robotics: A Review. – J. Robotics, Vol. 9, 2020, Issue 2, pp. 1-28. https://doi.org/10.3390/robotics902002110.3390/robotics9020021 Search in Google Scholar

43. Bauer, M., B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riß, C. Sandor, M. Wagner. Design of a Component-Based Augmented Reality Framework. IEEE Xplore, IEEE, INSPEC Accession Number: 7121584, 2001, pp. 45-54. Print ISBN: 0-7695-1375-1, DOI: 10.1109/ISAR.2001.970514.10.1109/ISAR.2001.970514 Search in Google Scholar

44. https://nxrev.com/2020/05/vuforia-vs-arcore/ Search in Google Scholar

45. ARCore. (Retreived on 02.11.2020). https://developers.google.com/ar Search in Google Scholar

eISSN:
1314-4081
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informationstechnik