1. bookVolumen 19 (2019): Heft 4 (November 2019)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results

Online veröffentlicht: 11 Dec 2019
Volumen & Heft: Volumen 19 (2019) - Heft 4 (November 2019)
Seitenbereich: 26 - 44
Eingereicht: 07 Aug 2019
Akzeptiert: 01 Nov 2019
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Adams, J., E. Balas, D. Zawack. The Shifting Bottleneck Procedurefor Job Shop Scheduling. – Management Science, Vol. 34, 1988, No 3, pp. 391-401.10.1287/mnsc.34.3.391Search in Google Scholar

2. Aiex, R. M., S. Binato, M. G. C. Resende. Parallel GRASPwith Path-Relinkingfor Job Shop Scheduling. – Parallel Computing, Vol. 29, 2003, pp. 393-430.10.1016/S0167-8191(03)00014-0Search in Google Scholar

3. Balas, E., A. Vazacopoulos. Guided Local Searchwith Shifting Bottleneckfor Job Shop Scheduling. – Management Science, Vol. 44, 1998, No 2, pp. 262-275.10.1287/mnsc.44.2.262Search in Google Scholar

4. Bierwirth, C., D. C. Mattfeld. Production Schedulingand Reschedulingwith Genetic Algorithms. – Evolutionary Computation, Vol. 7, 1999, No 1, pp. 1-17.10.1162/evco.1999.7.1.1Search in Google Scholar

5. Bosejko, W., M. Uchronski, M. Wodecki. Flexible Job Shop Scheduling Problem – Parallel Tabu Search Algorithmfor Multi-GPU. – Arhivesof Control Sciences, Vol. 22, 2012, No 4, pp. 389-397.10.2478/v10170-011-0030-2Search in Google Scholar

6. Brinkkötter, W., P. Brucker. Solving Open Benchmark Problemsforthe Job Shop Problem. – J. Scheduling, Vol. 4. 2001, pp. 53-64.10.1002/1099-1425(200101/02)4:1<53::AID-JOS59>3.0.CO;2-YSearch in Google Scholar

7. Brucker, P. The Job-Shop Problem: Oldand New Challenges. – In: Proc. of 3rd Multidisciplinary International Scheduling Conference, Paris, 28-31 August, 2007. http://www.mistaconference.org/2007/papers/The%20Job%20Shop%20Problem%20Old%20and%20New%20Challenges.pdfSearch in Google Scholar

8. Brucker, P., R. Schlie. Job Shopwith Multi-Purpose Machine. – Computing, Vol. 45, 1990, pp. 369-375.10.1007/BF02238804Search in Google Scholar

9. Fattahi, P., M. Saidi Mehrabad, F. Jolai. Mathematical Modelingand Heuristic Approachesto Flexible Job Shop Scheduling Problems. – Journalof Intelligent Manufacturing, Vol. 18, 2007, pp. 331-342.10.1007/s10845-007-0026-8Search in Google Scholar

10. Garey, M., D. Johnson, R. Sethi. The Complexityof Flowshopand Jobshop Scheduling. – Mathematicsof Operations Research, Vol. 1, 1976, No 2, pp. 117-129.10.1287/moor.1.2.117Search in Google Scholar

11. Ge, H., W. Du, F. Qian. A Hybrid Algorithm Basedon Particle Swarm Optimizationand Simulated Annealingfor Job Shop Scheduling. 2007. http://www.paper.edu.cn10.1109/ICNC.2007.44Search in Google Scholar

12. Geiger, M. J. Research Report. RR-12-01-01, January 2012, ISSN: 2192-0826, Helmut Schmidt University, Hamburg, Germany. https://d-nb.info/1023241773/34Search in Google Scholar

13. Glover, F. Tabu Search – Part 1. – ORSA Journalon Computing, Vol. 1, 1989, No 3, pp. 190-206.10.1287/ijoc.1.3.190Search in Google Scholar

14. Glover, F. Tabu Search – Part 2. – ORSA Journalon Computing, Vol. 2, 1990, No 1, pp. 4-32.10.1287/ijoc.2.1.4Search in Google Scholar

15. Glover, F., M. Laguna, R. Marti. Principlesof Tabu Search, 2003. https://www.uv.es/~rmarti/paper/docs/ts1.pdfSearch in Google Scholar

16. Guliashki, V., L. Kirilov. A Reference Point Genetic Algorithmfor Multi-Criteria Job Shop Scheduling Problems. – In: Proc. of International Conferenceon Information Technologies (InfoTech 2015), 29-th Issue, R. Romanski, Ed. 17-18 September 2015, Varna, St. St. Constantineand Elena Resort, Bulgaria, pp. 10-18. ISSN: 1314-1023.Search in Google Scholar

17. Huang, Z. A Modified Shifting Bottleneck Procedurefor Job Shop Scheduling, 2005. http://www.paper.edu.cnSearch in Google Scholar

18. Gautam, J. V., H. B. Prajapati, V. K. Dabhi, S. Chaudhary. – Empirical Studyof Job Scheduling Algorithmsin Hadoop MapReduce. – Cyberneticsand Information Technologies, Vol. 17, 2017, No 1, Sofia. ISSN: 1311-9702.10.1515/cait-2017-0012Search in Google Scholar

19. Kacem, I., S. Hammadi, P. Borne. Pareto-Optimality Approachfor Flexible Job-Shop Scheduling Problems: Hybridizationof Evolutionary Algorithmsand Fuzzy Logic. – Mathematicsand Computersin Simulation, Vol. 60, 2002, No 3-5, pp. 245-276.10.1016/S0378-4754(02)00019-8Search in Google Scholar

20. Kennedy, J., R. C. Eberhart. A Diskrete Binary Versionofthe Particle Swarm Algorithm. – In: Proc. of Conference Systems Man Cybernetics, NJ, Piscataway, 1997, pp. 4104-4108.Search in Google Scholar

21. Lawler, E., J. Lenstra, A. Rinnooy Kan, D. Shmoys. Sequencingand Scheduling: Algorithmsand Complexity. – In: A. H. G. Rinnooy Kan, S. C. Graves, P. H. Zipkin, Eds. Logisticsof Productionand Inventory, Vol. 4, Elsevier, 1993, Chapter 9, pp. 445-522.Search in Google Scholar

22. Lenstra, J. K., A. R. Kan, P. Brucker. Complexityof Machine Scheduling Problems. – Annalsof Discrete Mathematics, Vol. 1, 1977, pp. 343-362.10.1016/S0167-5060(08)70743-XSearch in Google Scholar

23. Li, J., Q. Pan, S. Xie, J. Liang. A Hybrid Pareto-Based Tabu Searchfor Multi-Objective Flexible Job Shop Scheduling Problemwith E/T Penalty. – Advancesin Swarm Intelligence, Lecture Notesin Computer Science, Vol. 6145, 2010, pp. 620-627.Search in Google Scholar

24. Low, C., Y. Yip, T.-H. Wu. Modellingand Heuristicsof FMS Schedulingwith Multiple Objectives. – Computers & Operations Research, Vol. 33, 2006, pp. 674-694.10.1016/j.cor.2004.07.013Search in Google Scholar

25. Olteanu, M., N. Paraschiv, P. Koprinkova-Hristova. Genetic Algorithmsvs. Knowledge-Based Controlof PHB Production. – Cyberneticsand Information Technologies, Vol. 19, 2019, No 2. ISSN: 1311-9702.10.2478/cait-2019-0018Search in Google Scholar

26. Mastrollili, M., L. M. Gambardela. Effective Neighborhood Functionsforthe Flexible Job Shop Scheduling Problem.Search in Google Scholar

27. Mattfeld, D. Evolutionary Searchandthe Job Shop: Investigationon Genetic Algorithmsfor Production Scheduling. – Physica, Springer, Heidelberg, Germany, 1996.Search in Google Scholar

28. Mesghouni, K., S. Hammadi, P. Borne. Evolutionary Algorithmsfor Job-Shop Scheduling. – Int. J. Appl. Math. Comput. Sci., Vol. 14, 2004, No 1, pp. 91-103.Search in Google Scholar

29. Nakandhkumar, R. S., atal. Optimizationof Job Shop Scheduling Problem Using Tabu Search Optimization Technique. – International Journalof Innovative Researchin Science, Engineeringand Technology, Vol. 3, March 2014, Special Issue 3.Search in Google Scholar

30. Nawaz Ripon, K. S., C.-H. Tsang, S. Kwong. An Evolutionary Approachfor Solvingthe Multi-Objective Jop-ShopScheduling Problem. – Studiesin Computational Intelligence (SCI), Vol. 49, 2007, Berlin, Heidelberg, Springer-Verlag, pp. 165-195.10.1007/978-3-540-48584-1_7Search in Google Scholar

31. Pesaru, V. Genetic Algorithm-Jobshop Scheduling. 2017. https://de.mathworks.com/matlabcentral/fileexchange/62567-genetic-algorithm-jobshop-schedulingSearch in Google Scholar

32. Rahimi-Vahed, R., S. M. Mirghorbani. A Multi-Objective Particle Swarmfora Flow Shop Scheduling Problem. – Journalof Combinatorial Optimization, Vol. 13, 2007, No 1, pp. 79-102.10.1007/s10878-006-9015-7Search in Google Scholar

33. Romasevych, Y., V. Loveikin. A Novel Multi-Epoch Particle Swarm Optimization Technique. – Cyberneticsand Information Technologies, Vol. 18, 2018, No 3.10.2478/cait-2018-0039Search in Google Scholar

34. Bordbar, S., P. Shamsinejad. A New Opinion Mining Methodbasedon Fuzzy Classifierand Particle Swarm Optimization (PSO) Algorithm. – Cyberneticsand Information Technologies, Vol. 18, 2018, No 2.10.2478/cait-2018-0026Search in Google Scholar

35. Schmidt, K. Using Tabu Searchto Solve Job Shop Scheduling Problemwith Sequence Dependent Setup Times. 2001.Search in Google Scholar

36. Sha, D. Y., H.-H. Lin. A Multi-Objective PSOfor Job-Shop Scheduling Problems. – Expert Systemswith Applications, Vol. 37, March 2010, Issue 2, pp. 1065-1070. http://dl.acm.org/citation.cfm?id=164584310.1016/j.eswa.2009.06.041Search in Google Scholar

37. Shuib, A., S. S. A. Gran. Multi-Objectives Optimization Modelfor Flexible Job Shop Scheduling Problem (FJSSP) with Machines’ Workload Balancing. – In: AIP Conference Proceedings, 1974, 020106 (2018). https://doi.org/10.1063/1.504163710.1063/1.5041637DOI öffnenSearch in Google Scholar

38. Tang, J., G. Zhang, B. Lin, B. Zhang. A Hybrid Algorithmfor Flexible Job-Shop Scheduling Problem. – Procedia Engineering, Vol. 15, 2011, pp. 3678-3683.10.1016/j.proeng.2011.08.689Search in Google Scholar

39. Udaiyakumar, K. C., M. Chandrasekaran. Applicationof Firefly Algorithmin Job Shop Scheduling Problemfor Minimizationof Makespan. – Procedia Engineering, Vol. 97, 2004, pp. 1798-1807.10.1016/j.proeng.2014.12.333Search in Google Scholar

40. Vaessens, R. J. M., E. H. L. Aarts, J. K. Lenstra. Job Shop Schedulingby Local Search. – INFORMS J. Computing, Vol. 8, 1996, pp. 302-317.10.1287/ijoc.8.3.302Search in Google Scholar

41. Xia, W. J., Z. M. Wu. An Effective Hybrid Optimization Approachfor Multi-Objective Flexible Job-Shop Scheduling Problems. – Computersand Industrial Engineering, Vol. 48, 2005, No 2, pp. 409-425.10.1016/j.cie.2005.01.018Search in Google Scholar

42. Zhang, G. H., X. Y. Shao, P. G. Li, L. Gao. An Effective Hybrid Particle Swarm Optimization Algorithmfor Multi-Objective Flexible Job-Shop Scheduling Problem. – Comtputersand Industrial Engineering, Vol. 56, 2009, No 4, pp. 1309-1318.10.1016/j.cie.2008.07.021Search in Google Scholar

43. Zhang, G., atal. An Effective Particle Swarm Optimizationfor Flexible Job Shop Scheduling Problem. – The Open Automationand Control Systems Journal, Vol. 6, 2014, pp. 1604-1611.10.2174/1874444301406011604Search in Google Scholar

44. Zhang, J., G. Ding, Y. Zou, S. Qin, J. Fu. Reviewof Job Shop Scheduling Researchand Its New Perspectivesunder Industry 4.0. – Journalof Intelligent Manufacturing, Vol. 30, 2019, Issue 4, No 19, 1809-1830.10.1007/s10845-017-1350-2Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo