1. bookVolumen 18 (2018): Heft 5 (May 2018)
    Special Thematic Heft on Optimal Codes and Related Topics
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

On the Classification of Splitting (v, u×c, λ) BIBDs

Online veröffentlicht: 26 May 2018
Volumen & Heft: Volumen 18 (2018) - Heft 5 (May 2018) - Special Thematic Heft on Optimal Codes and Related Topics
Seitenbereich: 87 - 94
Eingereicht: 30 Sep 2017
Akzeptiert: 28 Dec 2017
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1314-4081
Erstveröffentlichung
13 Mar 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Abel, R. J. R., G. Ge, J. Yin. Resolvable and Near-Resolvable Designs. – In: C. J. Colbourn, J. H. Dinitz, Eds. Handbook of Combinatorial Designs. 2nd Edition. Boca Raton, FL. CRC Press, 2007, pp. 124-132.Search in Google Scholar

2. Bassalygo, L. A., V. A. Zinoviev. Remark on Balanced Incomplete Block Designs, Near-Resolvable Block Designs, and q-ary Constant-Weight Codes. – Problems of Information Transmissions, Vol. 53, 2017, No 3, pp. 51-54.10.1134/S0032946017010045Search in Google Scholar

3. Bassalygo, L. A., V. S. Lebedev, V. A. Zinoviev. On m-Nearly Resolvable BIB Designs and q-ary Optimal Constant Weight Codes. – In: Proc. of 10th International Workshop on Coding and Cryptography, 18-22 September 2017, Saint-Petersburg, Russia.Search in Google Scholar

4. Beth, T., D. Jungnickel, H. Lenz. Design Theory. Cambridge University Press, 1993.Search in Google Scholar

5. C. J. Colbourn, J. H. Dinitz, Eds. Handbook of Combinatorial Designs. 2nd Edition – Discrete Mathematics and Its Applications, K. Rosen, Eds. Boca Raton, FL., CRC Press, 2007.Search in Google Scholar

6. Du, B. Splitting Balanced Incomplete Block Designs with Block Size 3×2. – J. Combin. Des., Vol. 12, 2004, pp. 404-420.10.1002/jcd.20025Search in Google Scholar

7. Du, B. Splitting Balanced Incomplete Block Designs. – Australas. J. Comb., Vol. 31, 2005, pp. 287-298.Search in Google Scholar

8. Ge, G., Y. Miao, L. Wang. Combinatorial Constructions for Optimal Splitting Authentication Codes. – SIAM J. Discrete Math., Vol. 18, 2005, No 4, pp. 663-678.10.1137/S0895480103435469Search in Google Scholar

9. Gilbert, E. N., F. J. MacWilliams, N. J. A. Sloane. Codes which Detect Deception. – Bell. System Tech. J., Vol. 53, 1974, pp. 405-424.10.1002/j.1538-7305.1974.tb02751.xSearch in Google Scholar

10. Haanpää, H., P. Kaski. The Near Resolvable 2-(13, 4, 3) Designs and Thirteen-Player Whist Tournaments. – Des. Codes Cryptogr., Vol. 35, 2005, No 3, pp. 271-285.10.1007/s10623-003-6738-7Search in Google Scholar

11. Kaski, P., P. Östergård. Classification Algorithms for Codes and Designs. Berlin, Springer, 2006.Search in Google Scholar

12. Morales, L. B., R. San Agustin,C. Velarde. Enumeration of All (2k + 1, k, k – 1)-NRBIBDs for 3 ≥ k ≥ 13, 2007. http://www.mcc.unam.mx/lbm/JCMCC05.pdfSearch in Google Scholar

13. Ogata, W., K. Kurosawa, D. R. Stinson, H. Saido. New Combinatorial Designs and Their Applications to Authentication Codes and Secret Sharing Schemes. – Discrete Math., Vol. 279, 2004, No 1-3, pp. 383-405.10.1016/S0012-365X(03)00283-8Search in Google Scholar

14. Semakov, N., V. Zinoviev. Equidistant q-ary Codes with Maximal Distance and Resolvable Balanced Incomplete Block Designs. – Problems Inform. Transmission, Vol. 4, 1968, No 2, pp. 3-10.Search in Google Scholar

15. Simmons, G. J. A Game Theory Model of Digital Message Authentication. – Congressus Numer., Vol. 34, 1982, pp. 413-424.Search in Google Scholar

16. Su, R., J. Wang. On the Existence of (v, 3×3, λ)-Splitting Balanced Incomplete Block Design with λ between 2 to 9. – Journal of Shanghai Jiaotong University (Science), Vol. 3, 2008, No 4, pp. 482-486.10.1007/s12204-008-0482-0Search in Google Scholar

17. Su, R., J. Wang. Further Results on the Existence of Splitting BIBDs and Application to Authentication Codes. – Acta Appl. Math., Vol. 109, 2010, No 3, pp. 791-803.10.1007/s10440-008-9346-8Search in Google Scholar

18. Topalova, S., S. Zhelezova. Doubly Resolvable Designs with Small Parameters. – Ars Combin., Vol. 117, 2014, pp. 289-302.Search in Google Scholar

19. Wang, J. A New Class of Optimal 3-Splitting Authentication Codes. – Des. Codes Cryptogr., Vol. 38, 2006, pp. 373-381.10.1007/s10623-005-1501-xSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo