[
Banach-Szott M., Dębska B., Tobiasova E., 2021. Properties of humic acids depending on the land use in different parts of Slovakia. Environmental Science and Pollution Research, 28: 58068-58080, https://doi.org/10.1007/s11356-021-14616-9
]Search in Google Scholar
[
Bednarek W., Reszka R., 2008. Influence of liming and mineral fertilization on the content of mineral nitrogen in soil. Journal of Elementology, 13(3): 301-308.
]Search in Google Scholar
[
Blecharczyk A., Małecka-Jankowiak I., Sawińska Z., Piechota T., Waniorek W., 2018. 60 years of experience in Brody with crop rotation and monoculture). pp. 27-40. In: Long-term experiments in agricultural studies in Poland; eds: Marks M., Jastrzębska M., Kostrzewska M.K.; Wyd. Nauk. UWM, Olsztyn.
]Search in Google Scholar
[
Bolan N.S., Adriano D.C., Kunhikrishnan A., James T., McDowell R., Senesi N., 2011. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110: 1-75, https://doi.org/10.1016/B978-0-12-385531-2.00001-3.
]Search in Google Scholar
[
Borowska K., Koper J., 2004. Changes in selenium content of slurry fertilised soil. Zmiany zawartości selenu w glebie nawożonej gnojowicą. Roczniki Gleboznawcze, 55(3): 53-58. (in Polish + summary in English)
]Search in Google Scholar
[
Brevik E.C., 2013. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3: 398-417, https://doi.org/10.1016/.chemosphere.2017.05.125.
]Search in Google Scholar
[
Cai A., Xu M., Wang B., Zhang W., Liang G., Hou E., Luo Y., 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189: 168-175, https://doi.org/10.1016/j.still.2018.12.022.
]Search in Google Scholar
[
Cao Z.Y., Wang Y., Li J., Zhang J.J., He N.P., 2016. Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. Journal of Mountain Science, 13: 2015-2027, https://doi.org/10.1007/s11629-015-3744-y.
]Search in Google Scholar
[
Chantigny M.H., 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practice. Geoderma, 113: 357-380, https://doi.org/10.1016/S0016-7061(02)00370-1.
]Search in Google Scholar
[
Chantigny M.H., Angers D.A., Prévost D., Simard R.R., Chalifour F.P., 1999. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biology and Biochemistry, 31: 543-550, https://doi.org/10.1016/S0038-0717(98)00139-4.
]Search in Google Scholar
[
COM 231 final., 2006. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection, Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN (accessed on 26 September 2006).
]Search in Google Scholar
[
Dębska B., Długosz J., Piotrowska-Długosz A., Banach-Szott M., 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration – results from a field-scale study. Journal of Soils and Sediments, 16: 2335-2343, https://doi.org/10.1007/s11368-016-1430-5.
]Search in Google Scholar
[
Dębska B., Jaskulska I., Jaskulski D., 2020. Method of till-age with the factor determining the quality of organic matter. Agronomy, 10: 1250, https://doi.org/10.3390/agronomy10091250.
]Search in Google Scholar
[
Dębska B., Kotwica K., Banach-Szott M., Spychaj-Fabisiak E., Tobiašová E., 2022. Soil fertility improvement and carbon sequestration through exogenous organic matter and biostimulant application. Agriculture, 2: 1478, https://doi.org/10.3390/agriculture12091478.
]Search in Google Scholar
[
Embacher A., Zsolnay A., Gattinger A., Munch J.C., 2008. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in Haplic Chernozem. Geoderma, 148: 63-69, https://doi.org/10.1016/j.geoderma.2008.09.006.
]Search in Google Scholar
[
Gonet S.S., Dębska B., Pakula J., 2002. The content of the dissolved organic carbon in soils and organic fertilizers. PTSH, Wrocław, Poland.
]Search in Google Scholar
[
Guimaraes D.V., Isidoria M., Gonzaga S., Da Silva T.O., Da Silva T.L., Da Silva Dias N., Silva Matias M.I., 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126: 177-182, https://doi.org/10.1016/j.still.2012.07.010.
]Search in Google Scholar
[
Guo Z., Zhang Z., Zhou H., Wang D., Peng X., 2019. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Scientific Reports, 9: 2505, https://doi.org/10.1038/s41598-019-38952-6.
]Search in Google Scholar
[
Hack H., Bleiholder H., Buhr L., Meier U., Schnock-Fricke U., Weber E., Witzenberger A. 1992. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen – Erweiterte BBCH-Skala, Allgemein. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 44: 265-270.
]Search in Google Scholar
[
Hari V., Rakovec O., Markonis Y., Hanel M., Kumar R., 2020. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Scientific Reports, 10(1): 12207, https://doi.org/10.1038/s41598-020-68872-9.
]Search in Google Scholar
[
Hossain A., Krupnik T.J., Timsina J., Mahboob M.G., Chaki A.K., Farooq M., 2020. Agricultural land degradation: processes and problems undermining future food security. pp. 17-61. In: Environment, Climate, Plant and Vegetation Growth; Fahad S., Hasanuzzaman M., Alam M., Ullah H., Saeed M., Ali Khan I., Adnan M.; Cham, Springer International Publishing, https://doi.org/10.1007/978-3-030-49732-3_2.
]Search in Google Scholar
[
Jaskulska I., Jaskulski D., 2021. Winter wheat and spring barley canopies under strip-till one-pass technology. Agronomy, 11(3): 426, https://doi.org/10.3390/agronomy11030426
]Search in Google Scholar
[
Jokubauskaite I., Slepetiene A., Karcauskiene D., 2015. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils. Eurasian Journal of Soil Science, 4: 137-143, https://doi.org/10.18393/ejss.91434.
]Search in Google Scholar
[
Kalbitz K., Solinger S., Park J.H., Michalzik B., Matzner E., 2000. Controls on the dynamics of organic matter in soils: A review. Soil Science, 165: 277-304, https://doi.org/10.1097/00010694-200004000-00001.
]Search in Google Scholar
[
Kirkby C.A., Richardson A.E., Wade L.J., Passioura J.B., Batten G.D., Blanchard C., Kirkegaard J.A., 2014. Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68: 402-409, https://doi.org/10.1016/j.soilbio.2013.09.032.
]Search in Google Scholar
[
Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E., 2019. Soil and the intensification of agriculture for global food security. Environment International, 132: 105078.
]Search in Google Scholar
[
Kotecki A. et al., 2020. Uprawa roślin. Praca zbiorowa pod red. A. Koteckiego T. 1. Wyd. 1. ISBN 978-837717-339-8.
]Search in Google Scholar
[
Kuś J., 2015. Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i Raporty IUNG-PIB, 45(19): 27-53. https://doi.10.26114/sir.iung.2015.45.02.
]Search in Google Scholar
[
Lal R., Negassa W., Lorenz K., 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15: 79-86, https://doi.org/10.1016/j.cosust.2015.09.002.
]Search in Google Scholar
[
Law B.E., Hudiburg T.W., Berner L.T., Kent J.J., Buotte P.C., Harmon M.E., 2018. Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences of the United States of America, 115: 3663-3668, https://doi.org/10.1073/pnas.1720064115.
]Search in Google Scholar
[
Lemanowicz J., Bartkowiak A., Dębska B., Majcherczak E., Michalska A., 2024. Mineral Components, Organic Matter Quality and Soil Enzymatic Activity under the Influence of Differentiated Farmyard Manure and Nitrogen Fertilisation. Minerals, 14, 645, https://doi.org/10.3390/min14070645.
]Search in Google Scholar
[
Levander O.A., Burk R.F., 2006. Uptake of human dietary standards for selenium. pp. 399-410. In: Selenium Its Molecular Biology and Role in Human Health; Hatfield D.L., Berry M.J., Gladyshev V.N.; Springer, New York, USA, 2nd edition.
]Search in Google Scholar
[
Matysiak K., Strażyński P., 2018. Fazy wzrostu i rozwoju wybranych gatunków roślin uprawnych i chwastów według skali BBCH. Cz. I. Wyd. Instytut Ochrony Roślin, Państwowy Instytut Badawczy (IOR-PIB), Poznań, pp. 184.
]Search in Google Scholar
[
McDowell W., Currie W.S., Aber J.D., Yano Y., 1998. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollution, 105: 175-182, https://doi.org/10.1023/A:1005032904590.
]Search in Google Scholar
[
Menšík L., Hlisnikovský L., Pospíšilová L., Kunzová E., 2018. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. Journal of Soils and Sediments, 18: 2813-2822, https://doi.org/10.1007/s11368-018-1933-3.
]Search in Google Scholar
[
Moreno R.G., Burdock R., Alvarez M.C.D., Crawford J.W., 2013. Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter. Applied and Environmental Soil Science, 283468, http://dx.doi.org/10.1155/2013/283468.
]Search in Google Scholar
[
Mythili, S. Natarajan K., Kalpana R., 2003. Zinc nutrition in rice: a review. Agricultural Reviews, 24(2): 136-141. Orzechowski M., Smólczyński S., 2021. Content of selected macro- and microelements in surface formations of organic soils in NE Poland. Polish Journal of Soil Science, 54(2): 155-165, doi: 10.17951/pjss/2021.54.2.155.
]Search in Google Scholar
[
Ouyang Y., Norton J.M., 2020. Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil. Applied and Environmental Microbiology, 18: 86(5), e02278-19, https://doi.org/10.1128/AEM.02278.
]Search in Google Scholar
[
Pikuła D., 2018. Wykorzystanie właściwości spektralnych kwasów huminowych do oceny właściwości próchnicy. Studia i Raporty IUNG-PIB Puławy, 56(10): 99-109, https://doi.10.26114/sir.iung.2018.56.08.
]Search in Google Scholar
[
Piotrowska M., 1985. Occurrence of selenium in cultivated soils in Poland. Roczniki Gleboznawcze, 36(1): 147-149. (in Polish + summary in English and Russian)
]Search in Google Scholar
[
Ray D.K., West P.C., Clark M., Gerber J.S., Prishchepov A.V., Chatterjee S., 2019. Climate change has likely already affected global food production. PLoS One 14(5): e0217148, https://doi.org/10.1371/journal.pone.0217148.
]Search in Google Scholar
[
Rosa E., Dębska B., 2018. Seasonal changes in the content of dissolved organic matter in arable soils. Journal of Soils and Sediments, 18: 2703-2714, https://doi.org/10.1007/s11368-017-1797-y.
]Search in Google Scholar
[
Safeguarding our soils, 2017. Nature Communications, 8, 1989.
]Search in Google Scholar
[
Silva Lara T., de Lima Lessa J.H., Rezende Dazio de Souza K., Branco Corguinha A.P., Fabio Dias Martins A., Lopes G., Guimaraes Guilherme L.R., 2019. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. Journal of Food Composition and Analysis, 81: 10-18, https://doi.org/10.1016/j.jfca.2019.05.002.
]Search in Google Scholar
[
Simon T., 2008. The influence of long-term organic and mineral fertilization on soil organic matter. Soil & Water Research, 3(2): 41-51, doi: 10.17221/21/2008-SWR.
]Search in Google Scholar
[
Stroud J.L., Broadle M.R., Foot I., Fairweather-Tait S.J., Hurst R., Knott P., Mowat H., Norman K., Scott P., Tucker M., White P.J., McGrath S.P., Zhao F.-J, 2010. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 332(1): 19-30, https://doi.org/10.1007/s11104-009-0229-1.
]Search in Google Scholar
[
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wyd. UP Wrocław, PTG, Wrocław–Warszawa.
]Search in Google Scholar
[
Szczepanek M., Stypczyńska Z., Dziamski A., Wichrowska D., 2020. Above- and below-ground part growth in chewings and strong creeping red fescue grown for seed resulting from retardants and N fertilization. Agronomy, 10(1): 4, https://doi.org/10.3390/agronomy10010004.
]Search in Google Scholar
[
Terzić D., Popović V.M., Malić N., Ikanović J., Rajičić V., Popović S., Lončar M., Lončarević V., 2019. Effects of long-term fertilization on yield of siderates and organic matter content of soil in the process of recultivation. Journal of Animal and Plant Sciences, 29(3): 790-795.
]Search in Google Scholar
[
Van Groenigen J.W., Van Kessel C., Hungate B.A., Oenema O., Powlson D.S., Van Groenigen K.J., 2017. Response to the letter to the editor regarding our viewpoint “sequestering soil organic carbon: A nitrogen dilemma”. Environmental Science and Technology, 51(20): 11503-11504, https://doi.org/10.1021/acs.est.7b04554.
]Search in Google Scholar
[
Ventorino V., De Marco A., Pepe O., De Santo A.V., Moschetti G., 2012. Impact of innovative agricultural practices of carbon sequestration on soil microbial community. pp. 145-178. In: Carbon Sequestration in Agricultural Soils; Piccolo A.; Springer, Berlin, Germany.
]Search in Google Scholar
[
Viet H.Q., 2023. Influence of 96 years of mineral and organic fertilization on selected soil properties: a case study from long-term field experiments in Skierniewice, central Poland. Soil Science Annual, 74(1): 161945, 1-11, doi.org/10.37501/soilsa/161945.
]Search in Google Scholar
[
Zsolnay A., 2003. Dissolved organic matter: artefacts, definitions and functions. Geoderma, 113: 187-209, doi.org/10.1016/S0016-7061(02)00361-0.
]Search in Google Scholar
[
Zsolnay A., Gorlitz H., 1994. Water extractable organic matter in arable soils effects of drought and long-term fertilization. Soil Biology and Biochemistry, 26: 1257-1261, https://doi.org/10.1016/0038-0717(94)90151-1
]Search in Google Scholar