Zitieren

Braffort P. and Tzara C., Energie de l’oscilateur harmonique dans le vide, C. R. Acad. Sci. Paris, 239, p. 1779, (1954). Search in Google Scholar

Braffort P., Surdin M. and Taroni A., L’énergie Moyenne d’un Oscillateur Harmonique Non Relativiste en Electrodynamique Aleatoire, C. R. Acad. Sci., 261, p. 4339, (1965). Search in Google Scholar

Surdin M., Stochastic Electrodynamics an Overview. In: van der Merwe A. (eds) Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology. Springer, Boston, MA. (1983), https://doi.org/10.1007/978-1-4684-8830-2_33 Search in Google Scholar

Wheller I.A. and Feynman R., Interaction with the Absorber as the Mecanism of Radiation, Rev., Mod. Phys., 17, 157, (1959). Search in Google Scholar

Marshall T.W., Random electrodynamics, Proc. R. Soc. London, Ser. A, 276, 475, (1963). Search in Google Scholar

Marshall T.W., Statistical electrodynamics, Proc. Cambridge Phil. Soc. 61, 537, (1965). Search in Google Scholar

Boyer T.H., Quantum electromagnetic zero-point energy and retarded dispersion forces, Phys. Rev., 174, 1631 (1968). Search in Google Scholar

Boyer T.H., A Brief Survey of Stochastic Electrodynamics, In: Barut A. O. (Eds.) Foundations of Radiation Theory and Quantum Electrodynamics. Springer, Boston, MA., (1980), https://doi.org/10.1007/978-1-4757-0671-05 Search in Google Scholar

Boyer T.H., Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory, Atoms. 7, 1, 29-39, (2019). Search in Google Scholar

de la Peña-Auerbach L. and Cetto A.M., Quantum mechanics derived from stochastic electrodynamics, Found. Phys., 8, 3-4, 191, (1978). Search in Google Scholar

de la Peña-Auerbach L. and Cetto A.M, The quantum dice: an introduction to stochastic electrodynamics, Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 528, (1996), ISBN 0-7923-3818-9. Search in Google Scholar

Boyer T.H., Random Electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. D, 11, 790, (1975). Search in Google Scholar

Boyer T.H., General Connection Between Random Electrodynamics and Quantum Electrodynamics for Free Electromagnetic Fields and for Dipol Oscillator Systems, Phys. Rev. D, 11, 809, (1975). Search in Google Scholar

Marshall T.W., A classical treatment of blackbody radiation, Nuovo Cimento, 38, 1, pp. 206-215, (1965). Search in Google Scholar

Boyer T.H., Asymptotic Retarded van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation, Phys. Rev. A, 5, p. 1799, (1972). Search in Google Scholar

Boyer T.H., Van der Waals forces and zero-point energy for dielectric and permeable materials, Phys. Rev. A, 9, p. 2078, (1974). Search in Google Scholar

Boyer T.H., Retarded van der Waals forces at all distances derived from classical electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. A, 7, p. 1832, (1973). Search in Google Scholar

Boyer T.H., Quantum Electromagnetic Zero - Point Energy of Conducting Spherical Shell and Casimir Model for a Charged Particle, Phys. Rev., 174, p. 1764, (1968). Search in Google Scholar

Surdin M., Braffort P. and Taroni A., Black-body radiation law deduced from stochastic electrodynamics, Nature 210, 405, (1966). Search in Google Scholar

Boyer T.H., Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zeropoint radiation, Phys. Rev. D29, 1096, (1984). Search in Google Scholar

Boyer T.H., Thermodynamics of the harmonic oscillator: derivation of the Planck blackbody spectrum from pure thermodynamics, European Journal of Physics, Volume 40, Issue 2, p. 025101, (2019). Search in Google Scholar

Boyer T.H., Third Law of Thermodynamics and Electromagnetic Zero-Point Radiation, Phys. Rev. D1, 1526, (1970). Search in Google Scholar

Boyer T.H., Specific Heat of a Classical, Plane, Rigid, Dipole Rotator in Electromagnetic Zero-Point Radiation, Phys. Rev. D1, 2257, (1970). Search in Google Scholar

Boyer T.H., Diamagnetism of a free particle in classical electron theory with classical electromagnetic zero-point radiation, Phys. Rev. A 21, 66, (1980). Search in Google Scholar

de la Peña-Auerbach L. and Jauregui A., Stochastic electrodynamics for the free particle, J. Math. Phys.24, 2751, (1983). Search in Google Scholar

Boyer T.H., Thermal effects of acceleration for a classical dipole oscillator in classical electromagnetic zero-point radiation, Phys. Rev. D 29, 1089, (1984). Search in Google Scholar

Cole D.C., Thermal Effects of Acceleration for a Spatially Extended Electromagnetic System in Classical Electromagnetic Zero Point Radiation: Transversely Positioned Classical Oscillators, Phys. Rev. D 35, 562-583, (1987). Search in Google Scholar

Boyer T.H., Classical and Quantum Interpretations Regarding Thermal Behavior in a Coordinate Frame Accelerating Through Zero-Point Radiation, arXiv:1011.1426v1, (2010). Search in Google Scholar

Puthoff H.E., Ground state of hydrogen as a zero point fluctuation determined state, Phys. Rev. D 35, 3266, (1987). Search in Google Scholar

Cole and Zou Y., Quantum mechanical ground state of hydrogen obtained from classical electrodynamics, Physics Letters A, Vol. 317, No. 1-2, pp. 14-20, (2003). Search in Google Scholar

Nieuwenhuizen Th.M., On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics, Entropy, 18, 135, (2016). Search in Google Scholar

Cetto A.M., de la Peña-Auerbach L. and Valdés-Hernández A., Atomic radiative corrections without QED: role of the zero-point field, Rev. Mex. Fis. vol. 59, no. 5, 433–443, (2013). Search in Google Scholar

Simaciu I. and Ciubotariu C., Classical model of Electron in Stochastic Electrodinamics, Rev. Mex. Fis. 47(4), 392, (2001). Search in Google Scholar

Simaciu I., Dumitrcscu Gh. and Dinu M., New Results in Stochastic Physiscs, Romanian Reports in Physics 47, 537, (1995). Search in Google Scholar

Barbat T., Ashgriz N. and Liu C.S., Dynamics of two interacting bubbles in an acoustic field, J. Fluid Mech. 389, 137, (1999). Search in Google Scholar

Doinikov A.A., Recent Research Developments in Acoustics, Vol. 1, (Transworld Research Network, Trivandrum, Kerala, 2003), pp. 39-67. Search in Google Scholar

Ainslie M.A. and Leighton T.G., Review of scattering and extinction cross-sections, damping factors and resonance frequencies of a spherical gas bubble, J. Acoust. Soc. Am. 130 (5), Pt. 2 (2011) Pub12667, https://doi.org/10.1121/1.3628321. Search in Google Scholar

Jackson J.D., Classical Electrodynamics, 2nd ed., Wiley, New York, (1975). Search in Google Scholar

Boyer T.H., Connecting blackbody radiation, relativity, and discrete charge in classical electrodynamics, Found. Phys. 37, p. 999, (2007), https://doi.org/10.1007/s10701-007-9139-3. Search in Google Scholar

Feynman R.P., Leighton R.B. and Matthew S., The Feynman Lectures on Physics, Vol. 1, Massachusetts: Addison-Wesley, (1964). Search in Google Scholar

Gradshteyn I.S. and Ryzhik I.M., Table of Integrals, Series, and Products, 7th Edition, Jeffrey, Alan and Zwillinger, Daniel (eds.), Academic Press, (2007). Search in Google Scholar

Griffiths D., Introduction to Elementary Particles, Wiley-Vch., (2008). Search in Google Scholar

Patrignani C. et al. (Particle Data Group), (2016), “Quarks”, Chin. Phys. C. 40: 100001. Search in Google Scholar

Simaciu I., Dumitrescu Gh. and Borsos Z., Mach’s Principle in the Acoustic World, arXiv:1907.05713, (2019). Search in Google Scholar

Ţiplea G., Simaciu I., Milea P.L. and Șchiopu P., Extraction of energy from the vacuum in SED: theoretical and technological models and limitations, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 83(2), pp. 267-286, 2021. Search in Google Scholar

Simaciu I., Borsos Z., Dumitrescu Gh., Silva G.T. and Bărbat T., The acoustic force of electrostatic type, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. teor., Fiz. 65 (69), No 2, (2019) 17; arXiv:1711.03567v1. Search in Google Scholar

Zavtrak S.T., A classical treatment of the long-range radiative interaction of small particles, Journal of Physics A, General Physics 23 (9), 1493, (1999). Search in Google Scholar

Dinu I., Fundaments of a Theory of Aether – Part 2, 2021. Search in Google Scholar

Uwe R. Fischer, Motion of Quantized Vortices as Elementary Objects, Annals of Physics, Volume 278, Issue 1, pp. 62-85, (1999). Search in Google Scholar

Allen J.J., Jouanne Y., Shashikanth B.N., Vortex interaction with a moving sphere, Journal of Fluid Mechanics, Cambridge, Vol. 587, pp. 337-346, 2007. Search in Google Scholar

Chena L., Zhanga L., Shaoa X.M., The motion of small bubble in the ideal vortex flow, Procedia Engineering 126, pp. 228–231, 2015. Search in Google Scholar

Cui B., Ni B. and Wu Q., Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field, Advances in Mechanical Engineering, Vol. 8(2), pp. 1–12, 2016. Search in Google Scholar

Butto N., A New Theory on Electron Wave-Particle Duality, Journal of High Energy Physics, Gravitation and Cosmology, 6, pp. 567-578, 2020. Search in Google Scholar

Ruban V.P., Bubbles with Attached Quantum Vortices in Trapped Binary Bose–Einstein Condensates, Journal of Experimental and Theoretical Physics, Vol. 133, pp. 779–785, 2021. Search in Google Scholar

de la Peña-Auerbach L. and Cetto A.M. and Valdés-Hernández A., Proposed physical explanation for the electron spin and related antisymmetry, Quantum Studies: Mathematics and Foundations volume 6, pp. 45–53, (2019). Search in Google Scholar

Barut A.O. and Zanghi N., Classical Model of the Dirac Electron, Phys. Rev. Lett. 52, pp. 2009-2012, (1984). Search in Google Scholar

Burinskii A., What tells Gravity on the shape and size of an electron, Physics of Particles and Nuclei 45(1), (2012). Search in Google Scholar

eISSN:
2537-4990
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
5 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Mechanik, Materialwissenschaft, andere, Physik, Theoretische und mathematische Physik, Technische und angewandte Physik