Uneingeschränkter Zugang

The Maximum Genetic Diversity Theory: A Comprehensive Framework for Understanding Evolutionary Processes

  
24. Apr. 2025

Zitieren
COVER HERUNTERLADEN

Lamarck JB. Zoological philosophy: an exposition with regard to the natural history of animals. Chicago: University of Chicago Press; 1984. LamarckJB Zoological philosophy: an exposition with regard to the natural history of animals Chicago University of Chicago Press 1984 Search in Google Scholar

Lewontin R. What is evolutionary theory. 2003. Santa Fe Institute. Available from: https://www.youtube.com/watch?v=n6W_FzjaKlw. (Accessed date: November 11, 2003) LewontinR What is evolutionary theory 2003 Santa Fe Institute Available from: https://www.youtube.com/watch?v=n6W_FzjaKlw. (Accessed date: November 11, 2003) Search in Google Scholar

Newman S. Remembering Richard Lewontin. Biopolitical Times, Center for Genetics and Society; 2021. Available from: https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021. (Accessed date: July 6, 2001) NewmanS Remembering Richard Lewontin Biopolitical Times, Center for Genetics and Society 2021 Available from: https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021. (Accessed date: July 6, 2001) Search in Google Scholar

Simpson GG. Tempo and mode in evolution. New York: Columbia University Press; 1944. SimpsonGG Tempo and mode in evolution New York Columbia University Press 1944 Search in Google Scholar

Bickel D. Testing hypotheses of molecular evolution. Phylogenetic trees and molecular evolution. Springer briefs in systems biology. Cham: Springer; 2022. p. 71–77. BickelD Testing hypotheses of molecular evolution Phylogenetic trees and molecular evolution. Springer briefs in systems biology Cham Springer 2022 71 77 Search in Google Scholar

黄石 and 朱作斌, 系统生物学与进化理论. 系统生物学, ed. 朱作斌, 张潇, and 王亮. 2022, 南京: 东南大学出版社. 黄石 and 朱作斌, 系统生物学与进化理论. 系统生物学, ed. 朱作斌, 张潇, and 王亮. 2022, 南京: 东南大学出版社. Search in Google Scholar

Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry. New York: Academic Press; 1962. p.189–225. ZuckerkandlE PaulingL Molecular disease, evolution, and genetic heterogeneity In: KashaM PullmanB (eds.) Horizons in biochemistry New York Academic Press 1962 189 225 Search in Google Scholar

Margoliash E. Primary structure and evolution of cytochrome C. Proceedings of the National academy of Sciences of the United States of America. 1963;50: 672–679. doi: 10.1073/pnas.50.4.672 MargoliashE Primary structure and evolution of cytochrome C Proceedings of the National academy of Sciences of the United States of America 1963 50 672 679 10.1073/pnas.50.4.672 Open DOISearch in Google Scholar

Doolittle RF, Blombaeck B. Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature. 1964;202: 147–152. doi: 10.1038/202147a0 DoolittleRF BlombaeckB Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications Nature 1964 202 147 152 10.1038/202147a0 Open DOISearch in Google Scholar

Kumar S. Molecular clocks: four decades of evolution. Nature Reviews Genetics. 2005;6(8): 654–662. doi: 10.1038/nrg1659 KumarS Molecular clocks: four decades of evolution Nature Reviews Genetics 2005 6 8 654 662 10.1038/nrg1659 Open DOISearch in Google Scholar

Luo D, Huang S. The genetic equidistance phenomenon at the proteomic level. Genomics. 2016;108(1): 25–30. doi: 10.1016/j.ygeno.2016.03.002 LuoD HuangS The genetic equidistance phenomenon at the proteomic level Genomics 2016 108 1 25 30 10.1016/j.ygeno.2016.03.002 Open DOISearch in Google Scholar

Yuan D, Huang S. Genetic equidistance at nucleotide level. Genomics. 2017;109: 192–195. doi: 10.1016/j.ygeno.2017.03.002 YuanD HuangS Genetic equidistance at nucleotide level Genomics 2017 109 192 195 10.1016/j.ygeno.2017.03.002 Open DOISearch in Google Scholar

Copley RR, Schultz J, Ponting CP, Bork P. Protein families in multicellular organisms. Current Opinion in Structural Biology. 1999;9: 408–415. doi: 10.1016/S0959-440X(99)80055-4 CopleyRR SchultzJ PontingCP BorkP Protein families in multicellular organisms Current Opinion in Structural Biology 1999 9 408 415 10.1016/S0959-440X(99)80055-4 Open DOISearch in Google Scholar

Denton M. Evolution: a theory in crisis. Chevy Chase, MD: Adler & Adler; 1985. DentonM Evolution: a theory in crisis Chevy Chase, MD Adler & Adler 1985 Search in Google Scholar

Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, et al. Evolution of the germline mutation rate across vertebrates. Nature. 2023;615(7951): 285–291. doi: 10.1038/s41586-023-05752-y BergeronLA BesenbacherS ZhengJ LiP BertelsenMF QuintardB Evolution of the germline mutation rate across vertebrates Nature 2023 615 7951 285 291 10.1038/s41586-023-05752-y Open DOISearch in Google Scholar

Brownstein CD, MacGuigan DJ, Kim D, Orr O, Yang L, David SR, et al. The genomic signatures of evolutionary stasis. Evolution; International Journal of Organic Evolution. 2024;78(5): 821–834. doi: 10.1093/evolut/qpae028 BrownsteinCD MacGuiganDJ KimD OrrO YangL DavidSR The genomic signatures of evolutionary stasis Evolution; International Journal of Organic Evolution 2024 78 5 821 834 10.1093/evolut/qpae028 Open DOISearch in Google Scholar

Mello B, Schrago CG. Modeling substitution rate evolution across lineages and relaxing the molecular clock. Genome Biology and Evolution. 2024;16(9): evae199. doi: 10.1093/gbe/evae199 MelloB SchragoCG Modeling substitution rate evolution across lineages and relaxing the molecular clock Genome Biology and Evolution 2024 16 9 evae199 10.1093/gbe/evae199 Open DOISearch in Google Scholar

Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biology. 2006;4(5): e88. doi: 10.1371/journal.pbio.0040088 DrummondAJ HoSY PhillipsMJ RambautA Relaxed phylogenetics and dating with confidence PLoS Biology 2006 4 5 e88 10.1371/journal.pbio.0040088 Open DOISearch in Google Scholar

Van Valen L. Molecular evolution as predicted by natural selection. Journal of Molecular Evolution. 1974;3: 89–101. doi: 10.1007/BF01796554 Van ValenL Molecular evolution as predicted by natural selection Journal of Molecular Evolution 1974 3 89 101 10.1007/BF01796554 Open DOISearch in Google Scholar

Clarke B. Darwinian evolution of proteins. Science. 1970;168(934): 1009–1011. doi: 10.1126/science.168.3934.1009 ClarkeB Darwinian evolution of proteins Science 1970 168 934 1009 1011 10.1126/science.168.3934.1009 Open DOISearch in Google Scholar

Richmond RC. Non-Darwinian evolution: a critique. Nature. 1970;225(5237): 1025–1028. doi: 10.1038/2251025a0 RichmondRC Non-Darwinian evolution: a critique Nature 1970 225 5237 1025 1028 10.1038/2251025a0 Open DOISearch in Google Scholar

Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217(5129): 624–626. doi: 10.1038/217624a0 KimuraM Evolutionary rate at the molecular level Nature 1968 217 5129 624 626 10.1038/217624a0 Open DOISearch in Google Scholar

Kimura M, Ohta T. On the rate of molecular evolution. Journal of Molecular Evolution. 1971;1: 1–17. doi: 10.1007/BF01659390 KimuraM OhtaT On the rate of molecular evolution Journal of Molecular Evolution 1971 1 1 17 10.1007/BF01659390 Open DOISearch in Google Scholar

King JL, Jukes TH. Non-Darwinian evolution. Science. 1969;164: 788–798. doi: 10.1126/science.164.3881.788 KingJL JukesTH Non-Darwinian evolution Science 1969 164 788 798 10.1126/science.164.3881.788 Open DOISearch in Google Scholar

Ayala FJ. Molecular clock mirages. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1999;21(1): 71–75. doi: 10.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-B AyalaFJ Molecular clock mirages Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology 1999 21 1 71 75 10.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-B Open DOISearch in Google Scholar

Pulquerio MJ, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution. 2007;22(4): 180–184. doi: 10.1016/j.tree.2006.11.013 PulquerioMJ NicholsRA Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution 2007 22 4 180 184 10.1016/j.tree.2006.11.013 Open DOISearch in Google Scholar

Kimura M, Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971;229: 467–479. doi: 10.1038/229467a0 KimuraM OhtaT Protein polymorphism as a phase of molecular evolution Nature 1971 229 467 479 10.1038/229467a0 Open DOISearch in Google Scholar

Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983. KimuraM The neutral theory of molecular evolution Cambridge Cambridge University Press 1983 Search in Google Scholar

Leigh EG Jr. Neutral theory: a historical perspective. Journal of Evolutionary Biology. 2007;20(6): 2075–2091. doi: 10.1111/j.1420-9101.2007.01410.x LeighEGJr Neutral theory: a historical perspective Journal of Evolutionary Biology 2007 20 6 2075 2091 10.1111/j.1420-9101.2007.01410.x Open DOISearch in Google Scholar

Fisher RA. The genetical theory of natural selection. Oxford, UK: Oxford University Press; 1930. FisherRA The genetical theory of natural selection Oxford, UK Oxford University Press 1930 Search in Google Scholar

Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics. 1932;1: 356–366. WrightS The roles of mutation, inbreeding, crossbreeding and selection in evolution Proceedings of the Sixth International Congress of Genetics 1932 1 356 366 Search in Google Scholar

Haldane JBS. The cost of natural selection. Journal of Genetics. 1957;55: 511–524. doi: 10.1007/BF02984069 HaldaneJBS The cost of natural selection Journal of Genetics 1957 55 511 524 10.1007/BF02984069 Open DOISearch in Google Scholar

Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National academy of Sciences of the United States of America. 1962;48: 582–592. doi: 10.1073/pnas.48.4.582 SueokaN On the genetic basis of variation and heterogeneity of DNA base composition Proceedings of the National academy of Sciences of the United States of America 1962 48 582 592 10.1073/pnas.48.4.582 Open DOISearch in Google Scholar

Freese E. On the evolution of the base composition of DNA. Journal of Theoretical Biology. 1962;3(1): 82–101. doi: 10.1016/S0022-5193(62)80005-8 FreeseE On the evolution of the base composition of DNA Journal of Theoretical Biology 1962 3 1 82 101 10.1016/S0022-5193(62)80005-8 Open DOISearch in Google Scholar

Lewontin RC. The genetic basis of evolutionary change. New York and London: Columbia University Press; 1974. LewontinRC The genetic basis of evolutionary change New York and London Columbia University Press 1974 Search in Google Scholar

Lewontin RC, Hubby JL. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54(2): 595–609. doi: 10.1093/genetics/54.2.595 LewontinRC HubbyJL A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura Genetics 1966 54 2 595 609 10.1093/genetics/54.2.595 Open DOISearch in Google Scholar

Dietrich MR. The origins of the neutral theory of molecular evolution. Journal of the History of Biology. 1994;27(1): 21–59. doi: 10.1007/BF01058626 DietrichMR The origins of the neutral theory of molecular evolution Journal of the History of Biology 1994 27 1 21 59 10.1007/BF01058626 Open DOISearch in Google Scholar

Suarez E, Barahona A. The experimental roots of the neutral theory of molecular evolution. History and Philosophy of the Life Sciences. 1996;18: 55–81. SuarezE BarahonaA The experimental roots of the neutral theory of molecular evolution History and Philosophy of the Life Sciences 1996 18 55 81 Search in Google Scholar

Palazzo AF, Gregory TR. The case for junk DNA. Plos Genetics. 2014;10(5): e1004351. doi: 10.1371/journal.pgen.1004351 PalazzoAF GregoryTR The case for junk DNA Plos Genetics 2014 10 5 e1004351 10.1371/journal.pgen.1004351 Open DOISearch in Google Scholar

Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. Plos Genetics. 2014;10(7): e1004525. doi: 10.1371/journal.pgen.1004525 RandsCM MeaderS PontingCP LunterG 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage Plos Genetics 2014 10 7 e1004525 10.1371/journal.pgen.1004525 Open DOISearch in Google Scholar

Doolittle WF, Brunet TDP. On causal roles and selected effects: our genome is mostly junk. BMC Biology. 2017;15(1): 116. doi: 10.1186/s12915-017-0460-9 DoolittleWF BrunetTDP On causal roles and selected effects: our genome is mostly junk BMC Biology 2017 15 1 116 10.1186/s12915-017-0460-9 Open DOISearch in Google Scholar

Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics. 1964;49: 725–738. doi: 10.1093/genetics/49.4.725 KimuraM CrowJF The number of alleles that can be maintained in a finite population Genetics 1964 49 725 738 10.1093/genetics/49.4.725 Open DOISearch in Google Scholar

Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nature Genetics. 2022;54(2): 128–133. doi: 10.1038/s41588-021-01005-8 DemeulemeesterJ DentroSC GerstungM Van LooP Biallelic mutations in cancer genomes reveal local mutational determinants Nature Genetics 2022 54 2 128 133 10.1038/s41588-021-01005-8 Open DOISearch in Google Scholar

Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. Plos Genetics. 2016;12(12): e1006489. doi: 10.1371/journal.pgen.1006489 HarpakA BhaskarA PritchardJK Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans Plos Genetics 2016 12 12 e1006489 10.1371/journal.pgen.1006489 Open DOISearch in Google Scholar

Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, et al. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. bioRxiv. 2024: 2024.08.05.606142. doi: 10.1101/2024.08.05.606142 PorubskyD DashnowH SasaniTA LogsdonGA HallastP NoyesMD A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree bioRxiv 2024 2024.08.05.606142. 10.1101/2024.08.05.606142 Open DOISearch in Google Scholar

Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proceedings of the National academy of Sciences of the United States of America. 2024;121(28): e2307107121. doi: 10.1073/pnas.2307107121 LynchM WeiW YeZ PfrenderM The genome-wide signature of short-term temporal selection Proceedings of the National academy of Sciences of the United States of America 2024 121 28 e2307107121 10.1073/pnas.2307107121 Open DOISearch in Google Scholar

Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms. Science China Life Sciences. 2014;57(9): 876–888. doi: 10.1007/s11427-014-4704-4 YuanD ZhuZ TanX LiangJ ZengC ZhangJ Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms Science China Life Sciences 2014 57 9 876 888 10.1007/s11427-014-4704-4 Open DOISearch in Google Scholar

Zhu Z, Yuan D, Luo D, Lu X, Huang S. Enrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's disease. Plos One. 2015;10(7): e0133421. doi: 10.1371/journal.pone.0133421 ZhuZ YuanD LuoD LuX HuangS Enrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's disease Plos One 2015 10 7 e0133421 10.1371/journal.pone.0133421 Open DOISearch in Google Scholar

Zhu Z, Man X, Xia M, Huang Y, Yuan D, Huang S. Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics. 2015;106(1): 23–29. doi: 10.1016/j.ygeno.2015.04.002 ZhuZ ManX XiaM HuangY YuanD HuangS Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast Genomics 2015 106 1 23 29 10.1016/j.ygeno.2015.04.002 Open DOISearch in Google Scholar

Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. arXiv. 2012;1209.2911. doi: 10.1007/s11427-014-4704-4 YuanD ZhuZ TanX LiangJ ZengC ZhangJ Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection arXiv 2012 1209.2911. 10.1007/s11427-014-4704-4 Open DOISearch in Google Scholar

Zhu Z, Lu Q, Wang J, Huang S. Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes. Scientific Reports. 2015;5: 16904. doi: 10.1038/srep16904 ZhuZ LuQ WangJ HuangS Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes Scientific Reports 2015 5 16904 10.1038/srep16904 Open DOISearch in Google Scholar

Kimura M, Ohta T. On some principles governing molecular evolution. Proceedings of the National academy of Sciences of the United States of America. 1974;71(7): 2848–2852. doi: 10.1073/pnas.71.7.2848 KimuraM OhtaT On some principles governing molecular evolution Proceedings of the National academy of Sciences of the United States of America 1974 71 7 2848 2852 10.1073/pnas.71.7.2848 Open DOISearch in Google Scholar

Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy IN, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23): 5775–5790.e30. doi: 10.1016/j.cell.2021.10.014 QuinodozSA JachowiczJW BhatP OllikainenN BanerjeeAK GoronzyIN RNA promotes the formation of spatial compartments in the nucleus Cell 2021 184 23 5775 5790.e30 10.1016/j.cell.2021.10.014 Open DOISearch in Google Scholar

Basu A, Bobrovnikov DG, Cieza B, Arcon JP, Qureshi Z, Orozco M, et al. Deciphering the mechanical code of the genome and epigenome. Nature Structural & Molecular Biology. 2022;29(12): 1178–1187. doi: 10.1038/s41594-022-00877-6 BasuA BobrovnikovDG CiezaB ArconJP QureshiZ OrozcoM Deciphering the mechanical code of the genome and epigenome Nature Structural & Molecular Biology 2022 29 12 1178 1187 10.1038/s41594-022-00877-6 Open DOISearch in Google Scholar

Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, et al. Position-dependent function of human sequence-specific transcription factors. Nature. 2024;631(8022): 891–898. doi: 10.1038/s41586-024-07662-z DuttkeSH GuzmanC ChangM Delos SantosNP McDonaldBR XieJ Position-dependent function of human sequence-specific transcription factors Nature 2024 631 8022 891 898 10.1038/s41586-024-07662-z Open DOISearch in Google Scholar

Eder M, Moene CJI, Dauban L, Leemans C, Steensel BV. Functional maps of a genomic locus reveal confinement of an Enhancer by its target gene. bioRxiv. 2024. doi: 10.1101/2024.08.26.609360 EderM MoeneCJI DaubanL LeemansC SteenselBV Functional maps of a genomic locus reveal confinement of an Enhancer by its target gene bioRxiv 2024 10.1101/2024.08.26.609360 Open DOISearch in Google Scholar

Du AY, Chobirko JD, Zhuo X, Feschotte C, Wang T. Regulatory transposable elements in the encyclopedia of DNA elements. Nature Communications. 2024;15(1): 7594. doi: 10.1038/s41467-024-51921-6 DuAY ChobirkoJD ZhuoX FeschotteC WangT Regulatory transposable elements in the encyclopedia of DNA elements Nature Communications 2024 15 1 7594 10.1038/s41467-024-51921-6 Open DOISearch in Google Scholar

Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research. 1968;11(3): 247–269. doi: 10.1017/S0016672300011459 KimuraM Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles Genetical Research 1968 11 3 247 269 10.1017/S0016672300011459 Open DOISearch in Google Scholar

Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915): 725–731. doi: 10.1038/s41586-022-04823-w ShenX SongS LiC ZhangJ Synonymous mutations in representative yeast genes are mostly strongly non-neutral Nature 2022 606 7915 725 731 10.1038/s41586-022-04823-w Open DOISearch in Google Scholar

Lu J, Wu CI. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proceedings of the National academy of Sciences of the United States of America. 2005;102(11): 4063–4067. doi: 10.1073/pnas.0500436102 LuJ WuCI Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee Proceedings of the National academy of Sciences of the United States of America 2005 102 11 4063 4067 10.1073/pnas.0500436102 Open DOISearch in Google Scholar

Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, et al. Synthetic genomes unveil the effects of synonymous recoding. bioRxiv. 2024: 2024.06.16.599206. doi: 10.1101/2024.06.16.599206 NyergesA Chiappino-PepeA BudnikB Baas-ThomasM FlynnR YanS Synthetic genomes unveil the effects of synonymous recoding bioRxiv 2024 2024.06.16.599206. 10.1101/2024.06.16.599206 Open DOISearch in Google Scholar

Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, et al. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proceedings of the National academy of Sciences of the United States of America. 2024;121(36): e2405510121. doi: 10.1073/pnas.2405510121 RodriguezA DiehlJD WrightGS BonarCD LundgrenTJ MossMJ Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production Proceedings of the National academy of Sciences of the United States of America 2024 121 36 e2405510121 10.1073/pnas.2405510121 Open DOISearch in Google Scholar

Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, et al. Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biology. 2012;10(9): e1001388. doi: 10.1371/journal.pbio.1001388 LefflerEM BullaugheyK MatuteDR MeyerWK SégurelL VenkatA Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biology 2012 10 9 e1001388 10.1371/journal.pbio.1001388 Open DOISearch in Google Scholar

Buffalo V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradox. eLife. 2021;10: e67509. doi: 10.7554/eLife.67509 BuffaloV Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradox eLife 2021 10 e67509 10.7554/eLife.67509 Open DOISearch in Google Scholar

Kern AD, Hahn MW. The neutral theory in light of natural selection. Molecular Biology and Evolution. 2018;35(6): 1366–1371. doi: 10.1093/molbev/msy092 KernAD HahnMW The neutral theory in light of natural selection Molecular Biology and Evolution 2018 35 6 1366 1371 10.1093/molbev/msy092 Open DOISearch in Google Scholar

Kreitman M. The neutral theory is dead. Long live the neutral theory. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1996;18(8): 678–683. discussion 683. doi: 10.1002/bies.950180812 KreitmanM The neutral theory is dead. Long live the neutral theory Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology 1996 18 8 678 683 discussion 683. 10.1002/bies.950180812 Open DOISearch in Google Scholar

Cann RL, Stoneking AC, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325: 31–36. doi: 10.1038/325031a0 CannRL StonekingAC WilsonAC Mitochondrial DNA and human evolution Nature 1987 325 31 36 10.1038/325031a0 Open DOISearch in Google Scholar

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution. 1985;39(4): 783–791. doi: 10.2307/2408678 FelsensteinJ Confidence limits on phylogenies: an approach using the bootstrap Evolution; International Journal of Organic Evolution 1985 39 4 783 791 10.2307/2408678 Open DOISearch in Google Scholar

Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. Journal of Computer Science and Systems Biology. 2008;1: 092–102. doi: 10.4172/jcsb.1000009 HuangS The genetic equidistance result of molecular evolution is independent of mutation rates Journal of Computer Science and Systems Biology 2008 1 092 102 10.4172/jcsb.1000009 Open DOISearch in Google Scholar

Avise JC. Molecular markers, natural history and evolution. New York, NY: Springer; 1994. AviseJC Molecular markers, natural history and evolution New York, NY Springer 1994 Search in Google Scholar

Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000. NeiM KumarS Molecular evolution and phylogenetics New York Oxford University Press 2000 Search in Google Scholar

Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973;246(5428): 96–98. doi: 10.1038/246096a0 OhtaT Slightly deleterious mutant substitutions in evolution Nature 1973 246 5428 96 98 10.1038/246096a0 Open DOISearch in Google Scholar

Huang S. Histone methyltransferases, diet nutrients, and tumor suppressors. Nature Reviews Cancer. 2002;2: 469–476. doi: 10.1038/nrc819 HuangS Histone methyltransferases, diet nutrients, and tumor suppressors Nature Reviews Cancer 2002 2 469 476 10.1038/nrc819 Open DOISearch in Google Scholar

Huang S. Histone methylation and the initiation of cancer. In: Tollefsbol T. (ed.) Cancer epigenetics. New York: CRC Press; 2008. p. 109–158. HuangS Histone methylation and the initiation of cancer In: TollefsbolT. (ed.) Cancer epigenetics New York CRC Press 2008 109 158 Search in Google Scholar

Huang S. Inverse relationship between genetic diversity and epigenetic complexity. Nature Precedings. 2009. doi: 10.1038/npre.2009.1751.2 HuangS Inverse relationship between genetic diversity and epigenetic complexity Nature Precedings 2009 10.1038/npre.2009.1751.2 Open DOISearch in Google Scholar

Huang S. The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century. Biological Theory. 2010;5: 40–52. doi: 10.1162/BIOT_a_00021 HuangS The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century Biological Theory 2010 5 40 52 10.1162/BIOT_a_00021 Open DOISearch in Google Scholar

Santoni G, Astori S, Leleu M, Glauser L, Zamora SA, Schioppa M, et al. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science. 2024;385(6707): eadg9982. doi: 10.1126/science.adg9982 SantoniG AstoriS LeleuM GlauserL ZamoraSA SchioppaM Chromatin plasticity predetermines neuronal eligibility for memory trace formation Science 2024 385 6707 eadg9982 10.1126/science.adg9982 Open DOISearch in Google Scholar

Aquadro CF. Why is the genome variable? Insights from Drosophila. Trends in Genetics. 1992;8(10): 355–362. doi: 10.1016/0168-9525(92)90281-8 AquadroCF Why is the genome variable? Insights from Drosophila Trends in Genetics 1992 8 10 355 362 10.1016/0168-9525(92)90281-8 Open DOISearch in Google Scholar

Lewontin RC. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics. 1991;128(4): 657–662. doi: 10.1093/genetics/128.4.657 LewontinRC Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 1991 128 4 657 662 10.1093/genetics/128.4.657 Open DOISearch in Google Scholar

Bateson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: Macmillan; 1894. BatesonW Materials for the study of variation treated with especial regard to discontinuity in the origin of species London Macmillan 1894 Search in Google Scholar

Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 1979;76: 5269–5273. doi: 10.1073/pnas.76.10.5269 NeiM LiWH Mathematical model for studying genetic variation in terms of restriction endonucleases Proceedings of the National Academy of Sciences of the United States of America 1979 76 5269 5273 10.1073/pnas.76.10.5269 Open DOISearch in Google Scholar

Steux C, Szpiech ZA. The maintenance of deleterious variation in wild Chinese rhesus macaques. Genome Biology and Evolution. 2024;16(6): evae115. doi: 10.1093/gbe/evae115 SteuxC SzpiechZA The maintenance of deleterious variation in wild Chinese rhesus macaques Genome Biology and Evolution 2024 16 6 evae115 10.1093/gbe/evae115 Open DOISearch in Google Scholar

Ellegren H, Galtier N. Determinants of genetic diversity. Nature Reviews Genetics. 2016;17(7): 422–433. doi: 10.1038/nrg.2016.58 EllegrenH GaltierN Determinants of genetic diversity Nature Reviews Genetics 2016 17 7 422 433 10.1038/nrg.2016.58 Open DOISearch in Google Scholar

Nevo E. Genetic diversity. In: Levin SA. (ed.) Encyclopedia of biodiversity. Amsterdam: Elsevier Inc; 2001. p. 662–677. doi: 10.1016/B978-0-12-384719-5.00065-4 NevoE Genetic diversity In: LevinSA (ed.) Encyclopedia of biodiversity Amsterdam Elsevier Inc 2001 662 677 10.1016/B978-0-12-384719-5.00065-4 Open DOISearch in Google Scholar

Yang J, Lusk R, Li WH. Organismal complexity, protein complexity, and gene duplicability. Proceedings of the National academy of Sciences of the United States of America. 2003;100(26): 15661–15665. doi: 10.1073/pnas.2536672100 YangJ LuskR LiWH Organismal complexity, protein complexity, and gene duplicability Proceedings of the National academy of Sciences of the United States of America 2003 100 26 15661 15665 10.1073/pnas.2536672100 Open DOISearch in Google Scholar

Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424(6945): 147–151. doi: 10.1038/nature01763 LevineM TjianR Transcription regulation and animal diversity Nature 2003 424 6945 147 151 10.1038/nature01763 Open DOISearch in Google Scholar

Vinogradov AE, Anatskaya OV. Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Research. 2007;35(19): 6350–6356. doi: 10.1093/nar/gkm723 VinogradovAE AnatskayaOV Organismal complexity, cell differentiation and gene expression: human over mouse Nucleic Acids Research 2007 35 19 6350 6356 10.1093/nar/gkm723 Open DOISearch in Google Scholar

Bonner JT. Perspective: the size-complexity rule. Evolution; International Journal of Organic Evolution. 2004;58: 1883–1890. doi: 10.1111/j.0014-3820.2004.tb00476.x BonnerJT Perspective: the size-complexity rule Evolution; International Journal of Organic Evolution 2004 58 1883 1890 10.1111/j.0014-3820.2004.tb00476.x Open DOISearch in Google Scholar

Carroll SB. Chance and necessity: the evolution of morphological complexity and diversity. Nature. 2001;409(6823): 1102–1109. doi: 10.1038/35059227 CarrollSB Chance and necessity: the evolution of morphological complexity and diversity Nature 2001 409 6823 1102 1109 10.1038/35059227 Open DOISearch in Google Scholar

McShea DW. Metazoan complexity and evolution: is there a trend? Evolution; International Journal of Organic Evolution. 1996;50: 477–492. doi: 10.2307/2410824 McSheaDW Metazoan complexity and evolution: is there a trend? Evolution; International Journal of Organic Evolution 1996 50 477 492 10.2307/2410824 Open DOISearch in Google Scholar

Bonner JT. The evolution of complexity. Princeton, NJ: Princeton University Press; 1988. BonnerJT The evolution of complexity Princeton, NJ Princeton University Press 1988 Search in Google Scholar

Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Computational Biology. 2006;2(5): e48. doi: 10.1371/journal.pcbi.0020048 VogelC ChothiaC Protein family expansions and biological complexity PLoS Computational Biology 2006 2 5 e48 10.1371/journal.pcbi.0020048 Open DOISearch in Google Scholar

Remy JJ. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology: CB. 2010;20(20): R877–R878. doi: 10.1016/j.cub.2010.08.013 RemyJJ Stable inheritance of an acquired behavior in Caenorhabditis elegans Current Biology: CB 2010 20 20 R877 R878 10.1016/j.cub.2010.08.013 Open DOISearch in Google Scholar

Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727): 1466–1469. doi: 10.1126/science.1108190 AnwayMD CuppAS UzumcuM SkinnerMK Epigenetic transgenerational actions of endocrine disruptors and male fertility Science 2005 308 5727 1466 1469 10.1126/science.1108190 Open DOISearch in Google Scholar

Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine. 2007;356(7): 697–705. doi: 10.1056/NEJMoa064522 HitchinsMP WongJJ SuthersG SuterCM MartinDI HawkinsNJ Inheritance of a cancer-associated MLH1 germ-line epimutation New England Journal of Medicine 2007 356 7 697 705 10.1056/NEJMoa064522 Open DOISearch in Google Scholar

Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proceedings of the National academy of Sciences of the United States of America. 2006;103(46): 17308–17312. doi: 10.1073/pnas.0607090103 CropleyJE SuterCM BeckmanKB MartinDI Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation Proceedings of the National academy of Sciences of the United States of America 2006 103 46 17308 17312 10.1073/pnas.0607090103 Open DOISearch in Google Scholar

Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nature Genetics. 2016;48(5): 497–499. doi: 10.1038/ng.3527 HuypensP SassS WuM DyckhoffD TschöpM TheisF Epigenetic germline inheritance of diet-induced obesity and insulin resistance Nature Genetics 2016 48 5 497 499 10.1038/ng.3527 Open DOISearch in Google Scholar

Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics. 2022;23(6): 325–341. doi: 10.1038/s41576-021-00438-5 Fitz-JamesMH CavalliG Molecular mechanisms of transgenerational epigenetic inheritance Nature Reviews Genetics 2022 23 6 325 341 10.1038/s41576-021-00438-5 Open DOISearch in Google Scholar

Yu J, Zhang Y, Fang Y, Paulo JA, Yaghoubi D, Hua X, et al. A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance. Cell. 2024;187: 5010.e–5028.e. doi: 10.1016/j.cell.2024.07.006 YuJ ZhangY FangY PauloJA YaghoubiD HuaX A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance Cell 2024 187 5010.e 5028.e 10.1016/j.cell.2024.07.006 Open DOISearch in Google Scholar

Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. Science China Life Sciences. 2013;56: 254–261. doi: 10.1007/s11427-013-4452-x HuT LongM YuanD ZhuZ HuangY HuangS The genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later Science China Life Sciences 2013 56 254 261 10.1007/s11427-013-4452-x Open DOISearch in Google Scholar

Huang S. New thoughts on an old riddle: what determines genetic diversity within and between species? Genomics. 2016;108(1): 3–10. doi: 10.1016/j.ygeno.2016.01.008 HuangS New thoughts on an old riddle: what determines genetic diversity within and between species? Genomics 2016 108 1 3 10 10.1016/j.ygeno.2016.01.008 Open DOISearch in Google Scholar

Huang S. The maximum genetic diversity theory of molecular evolution. Communications in Information and Systems. 2023;23: 359–392. doi: 10.4310/CIS.2023.v23.n4.a1 HuangS The maximum genetic diversity theory of molecular evolution Communications in Information and Systems 2023 23 359 392 10.4310/CIS.2023.v23.n4.a1 Open DOISearch in Google Scholar

Zhu Z, Han C, Huang S. New insights shed light on the enigma of genetic diversity and species complexity. Science China Life Sciences. 2024;67: 2774–2776. doi: 10.1007/s11427-023-2610-2 ZhuZ HanC HuangS New insights shed light on the enigma of genetic diversity and species complexity Science China Life Sciences 2024 67 2774 2776 10.1007/s11427-023-2610-2 Open DOISearch in Google Scholar

Orr HA. Adaptation and the cost of complexity. Evolution; International Journal of Organic Evolution. 2000;54(1): 13–20. doi: 10.1111/j.0014-3820.2000.tb00002.x OrrHA Adaptation and the cost of complexity Evolution; International Journal of Organic Evolution 2000 54 1 13 20 10.1111/j.0014-3820.2000.tb00002.x Open DOISearch in Google Scholar

Parts L, Batté A, Lopes M, Yuen MW, Laver M, San Luis BJ, et al. Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology. 2021;17(5): e10138. doi: 10.15252/msb.202010138 PartsL BattéA LopesM YuenMW LaverM San LuisBJ Natural variants suppress mutations in hundreds of essential genes Molecular Systems Biology 2021 17 5 e10138 10.15252/msb.202010138 Open DOISearch in Google Scholar

Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature. 1993;366(6452): 223–227. doi: 10.1038/366223a0 GouldSJ EldredgeN Punctuated equilibrium comes of age Nature 1993 366 6452 223 227 10.1038/366223a0 Open DOISearch in Google Scholar

Rudman SM, Greenblum SI, Rajpurohit S, Betancourt NJ, Hanna J, Tilk S, et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science. 2022;375(6586): eabj7484. doi: 10.1126/science.abj7484 RudmanSM GreenblumSI RajpurohitS BetancourtNJ HannaJ TilkS Direct observation of adaptive tracking on ecological time scales in Drosophila Science 2022 375 6586 eabj7484 10.1126/science.abj7484 Open DOISearch in Google Scholar

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336(6085): 1157–1160. doi: 10.1126/science.1217405 ShovalO SheftelH ShinarG HartY RamoteO MayoA Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space Science 2012 336 6085 1157 1160 10.1126/science.1217405 Open DOISearch in Google Scholar

Wang M, Wang D, Yu J, Huang S. Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins. PeerJ. 2020;8: e9983. doi: 10.7717/peerj.9983 WangM WangD YuJ HuangS Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins PeerJ 2020 8 e9983 10.7717/peerj.9983 Open DOISearch in Google Scholar

Bergsten J. A review of long-branch attraction. Cladistics: the International Journal of the Willi Hennig Society. 2005;21: 163–193. doi: 10.1111/j.1096-0031.2005.00059.x BergstenJ A review of long-branch attraction Cladistics: the International Journal of the Willi Hennig Society 2005 21 163 193 10.1111/j.1096-0031.2005.00059.x Open DOISearch in Google Scholar

Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Science China Life Sciences. 2012;55: 709–725. doi: 10.1007/s11427-012-4350-7 HuangS Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers Science China Life Sciences 2012 55 709 725 10.1007/s11427-012-4350-7 Open DOISearch in Google Scholar

Bickel D. A generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spaces. Zenodo. 2021. doi: 10.5281/zenodo.5123388 BickelD A generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spaces Zenodo 2021 10.5281/zenodo.5123388 Open DOISearch in Google Scholar

Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, et al. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science. 2025;387(6737): 1001–1007. doi: 10.1126/science.ads0215 ChenZ BaezaJA ChenC GonzalezMT GonzálezVL GreveC A genome-based phylogeny for Mollusca is concordant with fossils and morphology Science 2025 387 6737 1001 1007 10.1126/science.ads0215 Open DOISearch in Google Scholar

Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell. 2024;187(6): 1547–1562.e13. doi: 10.1016/j.cell.2024.01.052 MaoY HarveyWT PorubskyD MunsonKM HoekzemaK LewisAP Structurally divergent and recurrently mutated regions of primate genomes Cell 2024 187 6 1547 1562.e13 10.1016/j.cell.2024.01.052 Open DOISearch in Google Scholar

Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated genetic variation in humans and primates. Science (New York, N.Y.). 2023;380(6648): eabn8153. doi: 10.1126/science.abn8197 GaoH HampT EdeJ SchraiberJG McRaeJ Singer-BerkM The landscape of tolerated genetic variation in humans and primates Science (New York, N.Y.) 2023 380 6648 eabn8153 10.1126/science.abn8197 Open DOISearch in Google Scholar

Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science (New York, N.Y.). 2007;316(5822): 222–234. doi: 10.1126/science.1139247 Rhesus Macaque Genome Sequencing and Analysis Consortium GibbsRA RogersJ KatzeMG BumgarnerR WeinstockGM Evolutionary and biomedical insights from the rhesus macaque genome Science (New York, N.Y.) 2007 316 5822 222 234 10.1126/science.1139247 Open DOISearch in Google Scholar

Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Reviews. 2003;5(1): 52–61. KuikenC KorberB ShaferRW HIV sequence databases AIDS Reviews 2003 5 1 52 61 Search in Google Scholar

Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055): 69–87. doi: 10.1038/nature04072 Chimpanzee Sequencing and Analysis Consortium Initial sequence of the chimpanzee genome and comparison with the human genome Nature 2005 437 7055 69 87 10.1038/nature04072 Open DOISearch in Google Scholar

Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, et al. Comparative genomics of macaques and integrated insights into genetic variation and population history. bioRxiv. 2024: 2024.04.07.588379. doi: 10.1101/2024.04.07.588379 ZhangS XuN FuL YangX LiY YangZ Comparative genomics of macaques and integrated insights into genetic variation and population history bioRxiv 2024 2024.04.07.588379. 10.1101/2024.04.07.588379 Open DOISearch in Google Scholar

Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, et al. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nature Ecology and Evolution. 2025;9(1): 42–56. doi: 10.1038/s41559-024-02596-1 OrkinJD KudernaLFK Hermosilla-AlbalaN FontsereC AylwardML JaniakMC Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar Nature Ecology and Evolution 2025 9 1 42 56 10.1038/s41559-024-02596-1 Open DOISearch in Google Scholar

Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, et al. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science. 2025;387(6734): eadq7347. doi: 10.1126/science.adq7347 OberstallerJ XuS NaskarD ZhangM WangC GibbonsJ Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites Science 2025 387 6734 eadq7347 10.1126/science.adq7347 Open DOISearch in Google Scholar

Camellato BR, Brosh R, Ashe HJ, Maurano MT, Boeke JD. Synthetic reversed sequences reveal default genomic states. Nature. 2024;628(8007): 373–380. doi: 10.1038/s41586-024-07128-2 CamellatoBR BroshR AsheHJ MauranoMT BoekeJD Synthetic reversed sequences reveal default genomic states Nature 2024 628 8007 373 380 10.1038/s41586-024-07128-2 Open DOISearch in Google Scholar

Wang M, Huang S. The collective effects of genetic variants and complex traits. Journal of Human Genetics. 2023;68: 255–262. doi: 10.1038/s10038-022-01105-1 WangM HuangS The collective effects of genetic variants and complex traits Journal of Human Genetics 2023 68 255 262 10.1038/s10038-022-01105-1 Open DOISearch in Google Scholar

Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al. The impact of rare protein coding genetic variation on adult cognitive function. Nature Genetics. 2023;55(6): 927–938. doi: 10.1038/s41588-023-01398-8 ChenCY TianR GeT LamM Sanchez-AndradeG SinghT The impact of rare protein coding genetic variation on adult cognitive function Nature Genetics 2023 55 6 927 938 10.1038/s41588-023-01398-8 Open DOISearch in Google Scholar

Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki M, Zekavat SM, et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nature Neuroscience. 2016;19(12): 1563–1565. doi: 10.1038/nn.4404 GannaA GenoveseG HowriganDP ByrnesA KurkiM ZekavatSM Ultra-rare disruptive and damaging mutations influence educational attainment in the general population Nature Neuroscience 2016 19 12 1563 1565 10.1038/nn.4404 Open DOISearch in Google Scholar

Ganna A, Satterstrom FK, Zekavat SM, Das I, Kurki MI, Churchhouse C, et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. American Journal of Human Genetics. 2018;102(6): 1204–1211. doi: 10.1016/j.ajhg.2018.05.002 GannaA SatterstromFK ZekavatSM DasI KurkiMI ChurchhouseC Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum American Journal of Human Genetics 2018 102 6 1204 1211 10.1016/j.ajhg.2018.05.002 Open DOISearch in Google Scholar

Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, et al. The copy number variant architecture of psy-chopathology and cognitive development in the ABCD® study. medRxiv. 2024: 2024.05.14.24307376. doi: 10.1101/2024.05.14.24307376 ShaZ SunKY JungB BarzilayR MooreTM AlmasyL The copy number variant architecture of psy-chopathology and cognitive development in the ABCD® study medRxiv 2024 2024.05.14.24307376. 10.1101/2024.05.14.24307376 Open DOISearch in Google Scholar

Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, et al. Genetic architecture of the structural connectome. Nature Communications. 2024;15(1): 1962. doi: 10.1038/s41467-024-46023-2 WainbergM FordeNJ MansourS KerrebijnI MedlandSE HawcoC Genetic architecture of the structural connectome Nature Communications 2024 15 1 1962 10.1038/s41467-024-46023-2 Open DOISearch in Google Scholar

Zhang S, Xu N, Fu L, Yang X, Ma K, Li Y, et al. Integrated analysis of the complete sequence of a macaque genome. Nature. 2025. doi: 10.1038/s41586-025-08596-w ZhangS XuN FuL YangX MaK LiY Integrated analysis of the complete sequence of a macaque genome Nature 2025 10.1038/s41586-025-08596-w Open DOISearch in Google Scholar

Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM. Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proceedings. Biological Sciences/the Royal Society. 2017;284(1862): 20162738. doi: 10.1098/rspb.2016.2738 JolyM MichelettaJ De MarcoA LangermansJA SterckEHM WallerBM Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance Proceedings. Biological Sciences/the Royal Society 2017 284 1862 20162738 10.1098/rspb.2016.2738 Open DOISearch in Google Scholar

Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648): 906–913. doi: 10.1126/science.abn7829 KudernaLFK GaoH JaniakMC KuhlwilmM OrkinJD BataillonT A global catalog of whole-genome diversity from 233 primate species Science 2023 380 6648 906 913 10.1126/science.abn7829 Open DOISearch in Google Scholar

de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354(6311): 477–481. doi: 10.1126/science.aag2602 de ManuelM KuhlwilmM FrandsenP SousaVC DesaiT Prado-MartinezJ Chimpanzee genomic diversity reveals ancient admixture with bonobos Science 2016 354 6311 477 481 10.1126/science.aag2602 Open DOISearch in Google Scholar

Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930): 1035–1044. doi: 10.1126/science.1172257 TishkoffSA ReedFA FriedlaenderFR EhretC RanciaroA FromentA The genetic structure and history of Africans and African Americans Science 2009 324 5930 1035 1044 10.1126/science.1172257 Open DOISearch in Google Scholar

Lynn R. Race differences in intelligence. Augusta, GA: Washington Summit Publishers; 2006. LynnR Race differences in intelligence Augusta, GA Washington Summit Publishers 2006 Search in Google Scholar

Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167(3): 657–669.e21. doi: 10.1016/j.cell.2016.09.025 NédélecY SanzJ BaharianG SzpiechZA PacisA DumaineA Genetic ancestry and natural selection drive population differences in immune responses to pathogens Cell 2016 167 3 657 669.e21 10.1016/j.cell.2016.09.025 Open DOISearch in Google Scholar

Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3): 643–656.e17. doi: 10.1016/j.cell.2016.09.024 QuachH RotivalM PothlichetJ LohYE DannemannM ZidaneN Genetic adaptation and neandertal admixture shaped the immune system of human populations Cell 2016 167 3 643 656.e17 10.1016/j.cell.2016.09.024 Open DOISearch in Google Scholar

Lei X, Yuan D, Zhu Z, Huang S. Collective effects of common SNPs and risk prediction in lung cancer. Heredity. 2018;121: 537–547. doi: 10.1038/s41437-018-0063-4 LeiX YuanD ZhuZ HuangS Collective effects of common SNPs and risk prediction in lung cancer Heredity 2018 121 537 547 10.1038/s41437-018-0063-4 Open DOISearch in Google Scholar

He P, Lei X, Yuan D, Zhu Z, Huang S. Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports. 2017;7(1): 11661. doi: 10.1038/s41598-017-12104-0 HeP LeiX YuanD ZhuZ HuangS Accumulation of minor alleles and risk prediction in schizophrenia Scientific Reports 2017 7 1 11661 10.1038/s41598-017-12104-0 Open DOISearch in Google Scholar

Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the National academy of Sciences of the United States of America. 2018;115(1): 151–156. doi: 10.1073/pnas.1707227114 SanjakJS SidorenkoJ RobinsonMR ThorntonKR VisscherPM Evidence of directional and stabilizing selection in contemporary humans Proceedings of the National academy of Sciences of the United States of America 2018 115 1 151 156 10.1073/pnas.1707227114 Open DOISearch in Google Scholar

Amos W, Elhaik E. Unexpected D-tour ahead: why the D-statistic, applied to humans, measures mutation rate variation not Neanderthal introgression. bioRxiv. 2025. Available from: https://www.biorxiv.org/content/10.1101/2024.12.31.630954v2. doi: 10.1101/2024.12.31.630954 (Accessed date: December 31, 2024) AmosW ElhaikE Unexpected D-tour ahead: why the D-statistic, applied to humans, measures mutation rate variation not Neanderthal introgression bioRxiv 2025 Available from: https://www.biorxiv.org/content/10.1101/2024.12.31.630954v2. 10.1101/2024.12.31.630954 (Accessed date: December 31, 2024) Open DOISearch in Google Scholar

Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science. 2023;381(6664): eadd1250. doi: 10.1126/science.add1250 HortonCA AlexandariAM HayesMGB MarklundE SchaepeJM AdithamAK Short tandem repeats bind transcription factors to tune eukaryotic gene expression Science 2023 381 6664 eadd1250 10.1126/science.add1250 Open DOISearch in Google Scholar

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414): 57–74. doi: 10.1038/nature11247 ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature 2012 489 7414 57 74 10.1038/nature11247 Open DOISearch in Google Scholar

Mattick JS. A Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAs. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 2023;45(9): e2300080. doi: 10.1002/bies.202300080 MattickJS A Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAs Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology 2023 45 9 e2300080 10.1002/bies.202300080 Open DOISearch in Google Scholar

Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, et al. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science. 2025;387(6734): eadm9466. doi: 10.1126/science.adm9466 MeneuL ChapardC SerizayJ WestbrookA RouthierE RuaultM Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus Science 2025 387 6734 eadm9466 10.1126/science.adm9466 Open DOISearch in Google Scholar

Li A, Evans DS, Cummings S, Ideker T. Somatic mutation as an explanation for epigenetic aging. Nature Aging. 2025. doi: 10.1038/s43587-024-00794-x LiA EvansDS CummingsS IdekerT Somatic mutation as an explanation for epigenetic aging Nature Aging 2025 10.1038/s43587-024-00794-x Open DOISearch in Google Scholar

Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, et al. Quantifying constraint in the human mitochondrial genome. Nature. 2024;635: 390–397. doi: 10.1038/s41586-024-08048-x LakeNJ MaK LiuW BattleSL LaricchiaKM TiaoG Quantifying constraint in the human mitochondrial genome Nature 2024 635 390 397 10.1038/s41586-024-08048-x Open DOISearch in Google Scholar

Couce A, Limdi A, Magnan M, Owen SV, Herren CM, Lenski RE, et al. Changing fitness effects of mutations through long-term bacterial evolution. Science. 2024;383(6681): eadd1417. doi: 10.1126/science.add1417 CouceA LimdiA MagnanM OwenSV HerrenCM LenskiRE Changing fitness effects of mutations through long-term bacterial evolution Science 2024 383 6681 eadd1417 10.1126/science.add1417 Open DOISearch in Google Scholar

Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell. 2009;138(4): 774–786. doi: 10.1016/j.cell.2009.07.038 HalabiN RivoireO LeiblerS RanganathanR Protein sectors: evolutionary units of three-dimensional structure Cell 2009 138 4 774 786 10.1016/j.cell.2009.07.038 Open DOISearch in Google Scholar

Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, et al. Structural polymorphism and diversity of human segmental duplications. Nature Genetics. 2025;57(2): 390–401. doi: 10.1038/s41588-024-02051-8 JeongH DishuckPC YooD HarveyWT MunsonKM LewisAP Structural polymorphism and diversity of human segmental duplications Nature Genetics 2025 57 2 390 401 10.1038/s41588-024-02051-8 Open DOISearch in Google Scholar

Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, et al. Bigger genomes provide environment-dependent growth benefits in grasses. The New Phytologist. 2024;244(5): 2049–2061. doi: 10.1111/nph.20150 SimpsonKJ MianS ForrestelEJ HackelJ MortonJA LeitchAR Bigger genomes provide environment-dependent growth benefits in grasses The New Phytologist 2024 244 5 2049 2061 10.1111/nph.20150 Open DOISearch in Google Scholar

Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, et al. The mutational landscape of human somatic and germline cells. Nature. 2021;597(7876): 381–386. doi: 10.1038/s41586-021-03822-7 MooreL CaganA CoorensTHH NevilleMDC SanghviR SandersMA The mutational landscape of human somatic and germline cells Nature 2021 597 7876 381 386 10.1038/s41586-021-03822-7 Open DOISearch in Google Scholar

Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, et al. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. Nature Aging. 2024;4(9): 1211–1230. doi: 10.1038/s43587-024-00672-6 RuY DengX ChenJ ZhangL XuZ LvQ Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA Nature Aging 2024 4 9 1211 1230 10.1038/s43587-024-00672-6 Open DOISearch in Google Scholar

Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. Human adaptation to diverse biomes over the past 3 million years. Science. 2023;380(6645): 604–608. doi: 10.1126/science.abq1288 ZellerE TimmermannA YunKS RaiaP SteinK RuanJ Human adaptation to diverse biomes over the past 3 million years Science 2023 380 6645 604 608 10.1126/science.abq1288 Open DOISearch in Google Scholar

Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, et al. Genetic diversity loss in the Anthropocene. Science. 2022;377(6613): 1431–1435. doi: 10.1126/science.abn5642 Exposito-AlonsoM BookerTR CzechL GillespieL HateleyS KyriazisCC Genetic diversity loss in the Anthropocene Science 2022 377 6613 1431 1435 10.1126/science.abn5642 Open DOISearch in Google Scholar

Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature. 2024;632(8026): 808–814. doi: 10.1038/s41586-024-07731-3 GrossN MaestreFT LiancourtP BerdugoM MartinR GozaloB Unforeseen plant phenotypic diversity in a dry and grazed world Nature 2024 632 8026 808 814 10.1038/s41586-024-07731-3 Open DOISearch in Google Scholar

Jenkin F. The origin of species. The North British Review. 1867;46: 277–318. JenkinF The origin of species The North British Review 1867 46 277 318 Search in Google Scholar

Goldschmidt R. The material basis of evolution. New Haven, CT: Yale University Press; 1940. GoldschmidtR The material basis of evolution New Haven, CT Yale University Press 1940 Search in Google Scholar

Forsdyke DR. Evolutionary bioinformatics. New York: Springer; 2011. ForsdykeDR Evolutionary bioinformatics New York Springer 2011 Search in Google Scholar

Heng HH. Genome chaos: rethinking genetics, evolution, and molecular medicine. Cambridge, MA, USA: Academic Press Elsevier; 2019. HengHH Genome chaos: rethinking genetics, evolution, and molecular medicine Cambridge, MA, USA Academic Press Elsevier 2019 Search in Google Scholar

Zhang Y. The genetic equidistance and maximum genetic diversity hypothesis: smoke and mirrors? bioRxiv. 2023. doi: 10.1101/2023.02.14.528494 ZhangY The genetic equidistance and maximum genetic diversity hypothesis: smoke and mirrors? bioRxiv 2023 10.1101/2023.02.14.528494 Open DOISearch in Google Scholar

Huang S. A rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesis. Zenodo. 2025. doi: 10.5281/zenodo.14927073 HuangS A rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesis Zenodo 2025 10.5281/zenodo.14927073 Open DOISearch in Google Scholar

Yuan D, Lei X, Gui Y, Zhu Z, Wang M, Zhang Y, et al. Modern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNA. bioRxiv. 2017. doi: 10.1101/101410 YuanD LeiX GuiY ZhuZ WangM ZhangY Modern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNA bioRxiv 2017 10.1101/101410 Open DOISearch in Google Scholar

Huang S. Examining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in press. bioRxiv. 2023. doi: 10.1101/2023.11.09.566475 HuangS Examining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in press bioRxiv 2023 10.1101/2023.11.09.566475 Open DOISearch in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Biochemie, Biologie, Evolutionsbiologie, Philosophie, Philosophiegeschichte, Philosophiegeschichte, andere, Physik, Astronomie und Astrophysik