Center for Medical Genetics, Department of Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangsha, P.R. China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Lamarck JB. Zoological philosophy: an exposition with regard to the natural history of animals. Chicago: University of Chicago Press; 1984.LamarckJBZoological philosophy: an exposition with regard to the natural history of animalsChicagoUniversity of Chicago Press1984Search in Google Scholar
Lewontin R. What is evolutionary theory. 2003. Santa Fe Institute. Available from: https://www.youtube.com/watch?v=n6W_FzjaKlw. (Accessed date: November 11, 2003)LewontinRWhat is evolutionary theory2003Santa Fe InstituteAvailable from: https://www.youtube.com/watch?v=n6W_FzjaKlw. (Accessed date: November 11, 2003)Search in Google Scholar
Newman S. Remembering Richard Lewontin. Biopolitical Times, Center for Genetics and Society; 2021. Available from: https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021. (Accessed date: July 6, 2001)NewmanSRemembering Richard LewontinBiopolitical Times, Center for Genetics and Society2021Available from: https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021. (Accessed date: July 6, 2001)Search in Google Scholar
Simpson GG. Tempo and mode in evolution. New York: Columbia University Press; 1944.SimpsonGGTempo and mode in evolutionNew YorkColumbia University Press1944Search in Google Scholar
Bickel D. Testing hypotheses of molecular evolution. Phylogenetic trees and molecular evolution. Springer briefs in systems biology. Cham: Springer; 2022. p. 71–77.BickelDTesting hypotheses of molecular evolutionPhylogenetic trees and molecular evolution. Springer briefs in systems biologyChamSpringer20227177Search in Google Scholar
黄石 and 朱作斌, 系统生物学与进化理论. 系统生物学, ed. 朱作斌, 张潇, and 王亮. 2022, 南京: 东南大学出版社.黄石 and 朱作斌, 系统生物学与进化理论. 系统生物学, ed. 朱作斌, 张潇, and 王亮. 2022, 南京: 东南大学出版社.Search in Google Scholar
Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry. New York: Academic Press; 1962. p.189–225.ZuckerkandlEPaulingLMolecular disease, evolution, and genetic heterogeneityIn:KashaMPullmanB(eds.)Horizons in biochemistryNew YorkAcademic Press1962189225Search in Google Scholar
Margoliash E. Primary structure and evolution of cytochrome C. Proceedings of the National academy of Sciences of the United States of America. 1963;50: 672–679. doi: 10.1073/pnas.50.4.672MargoliashEPrimary structure and evolution of cytochrome CProceedings of the National academy of Sciences of the United States of America19635067267910.1073/pnas.50.4.672Open DOISearch in Google Scholar
Doolittle RF, Blombaeck B. Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature. 1964;202: 147–152. doi: 10.1038/202147a0DoolittleRFBlombaeckBAmino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implicationsNature196420214715210.1038/202147a0Open DOISearch in Google Scholar
Kumar S. Molecular clocks: four decades of evolution. Nature Reviews Genetics. 2005;6(8): 654–662. doi: 10.1038/nrg1659KumarSMolecular clocks: four decades of evolutionNature Reviews Genetics20056865466210.1038/nrg1659Open DOISearch in Google Scholar
Luo D, Huang S. The genetic equidistance phenomenon at the proteomic level. Genomics. 2016;108(1): 25–30. doi: 10.1016/j.ygeno.2016.03.002LuoDHuangSThe genetic equidistance phenomenon at the proteomic levelGenomics20161081253010.1016/j.ygeno.2016.03.002Open DOISearch in Google Scholar
Yuan D, Huang S. Genetic equidistance at nucleotide level. Genomics. 2017;109: 192–195. doi: 10.1016/j.ygeno.2017.03.002YuanDHuangSGenetic equidistance at nucleotide levelGenomics201710919219510.1016/j.ygeno.2017.03.002Open DOISearch in Google Scholar
Copley RR, Schultz J, Ponting CP, Bork P. Protein families in multicellular organisms. Current Opinion in Structural Biology. 1999;9: 408–415. doi: 10.1016/S0959-440X(99)80055-4CopleyRRSchultzJPontingCPBorkPProtein families in multicellular organismsCurrent Opinion in Structural Biology1999940841510.1016/S0959-440X(99)80055-4Open DOISearch in Google Scholar
Denton M. Evolution: a theory in crisis. Chevy Chase, MD: Adler & Adler; 1985.DentonMEvolution: a theory in crisisChevy Chase, MDAdler & Adler1985Search in Google Scholar
Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, et al. Evolution of the germline mutation rate across vertebrates. Nature. 2023;615(7951): 285–291. doi: 10.1038/s41586-023-05752-yBergeronLABesenbacherSZhengJLiPBertelsenMFQuintardBEvolution of the germline mutation rate across vertebratesNature2023615795128529110.1038/s41586-023-05752-yOpen DOISearch in Google Scholar
Brownstein CD, MacGuigan DJ, Kim D, Orr O, Yang L, David SR, et al. The genomic signatures of evolutionary stasis. Evolution; International Journal of Organic Evolution. 2024;78(5): 821–834. doi: 10.1093/evolut/qpae028BrownsteinCDMacGuiganDJKimDOrrOYangLDavidSRThe genomic signatures of evolutionary stasisEvolution; International Journal of Organic Evolution202478582183410.1093/evolut/qpae028Open DOISearch in Google Scholar
Mello B, Schrago CG. Modeling substitution rate evolution across lineages and relaxing the molecular clock. Genome Biology and Evolution. 2024;16(9): evae199. doi: 10.1093/gbe/evae199MelloBSchragoCGModeling substitution rate evolution across lineages and relaxing the molecular clockGenome Biology and Evolution2024169evae19910.1093/gbe/evae199Open DOISearch in Google Scholar
Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biology. 2006;4(5): e88. doi: 10.1371/journal.pbio.0040088DrummondAJHoSYPhillipsMJRambautARelaxed phylogenetics and dating with confidencePLoS Biology200645e8810.1371/journal.pbio.0040088Open DOISearch in Google Scholar
Van Valen L. Molecular evolution as predicted by natural selection. Journal of Molecular Evolution. 1974;3: 89–101. doi: 10.1007/BF01796554Van ValenLMolecular evolution as predicted by natural selectionJournal of Molecular Evolution197438910110.1007/BF01796554Open DOISearch in Google Scholar
Clarke B. Darwinian evolution of proteins. Science. 1970;168(934): 1009–1011. doi: 10.1126/science.168.3934.1009ClarkeBDarwinian evolution of proteinsScience19701689341009101110.1126/science.168.3934.1009Open DOISearch in Google Scholar
Richmond RC. Non-Darwinian evolution: a critique. Nature. 1970;225(5237): 1025–1028. doi: 10.1038/2251025a0RichmondRCNon-Darwinian evolution: a critiqueNature197022552371025102810.1038/2251025a0Open DOISearch in Google Scholar
Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217(5129): 624–626. doi: 10.1038/217624a0KimuraMEvolutionary rate at the molecular levelNature1968217512962462610.1038/217624a0Open DOISearch in Google Scholar
Kimura M, Ohta T. On the rate of molecular evolution. Journal of Molecular Evolution. 1971;1: 1–17. doi: 10.1007/BF01659390KimuraMOhtaTOn the rate of molecular evolutionJournal of Molecular Evolution1971111710.1007/BF01659390Open DOISearch in Google Scholar
King JL, Jukes TH. Non-Darwinian evolution. Science. 1969;164: 788–798. doi: 10.1126/science.164.3881.788KingJLJukesTHNon-Darwinian evolutionScience196916478879810.1126/science.164.3881.788Open DOISearch in Google Scholar
Ayala FJ. Molecular clock mirages. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1999;21(1): 71–75. doi: 10.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-BAyalaFJMolecular clock miragesBioessays: News and Reviews in Molecular, Cellular and Developmental Biology1999211717510.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-BOpen DOISearch in Google Scholar
Pulquerio MJ, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution. 2007;22(4): 180–184. doi: 10.1016/j.tree.2006.11.013PulquerioMJNicholsRADates from the molecular clock: how wrong can we be?Trends in Ecology & Evolution200722418018410.1016/j.tree.2006.11.013Open DOISearch in Google Scholar
Kimura M, Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971;229: 467–479. doi: 10.1038/229467a0KimuraMOhtaTProtein polymorphism as a phase of molecular evolutionNature197122946747910.1038/229467a0Open DOISearch in Google Scholar
Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.KimuraMThe neutral theory of molecular evolutionCambridgeCambridge University Press1983Search in Google Scholar
Leigh EG Jr. Neutral theory: a historical perspective. Journal of Evolutionary Biology. 2007;20(6): 2075–2091. doi: 10.1111/j.1420-9101.2007.01410.xLeighEGJrNeutral theory: a historical perspectiveJournal of Evolutionary Biology20072062075209110.1111/j.1420-9101.2007.01410.xOpen DOISearch in Google Scholar
Fisher RA. The genetical theory of natural selection. Oxford, UK: Oxford University Press; 1930.FisherRAThe genetical theory of natural selectionOxford, UKOxford University Press1930Search in Google Scholar
Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics. 1932;1: 356–366.WrightSThe roles of mutation, inbreeding, crossbreeding and selection in evolutionProceedings of the Sixth International Congress of Genetics19321356366Search in Google Scholar
Haldane JBS. The cost of natural selection. Journal of Genetics. 1957;55: 511–524. doi: 10.1007/BF02984069HaldaneJBSThe cost of natural selectionJournal of Genetics19575551152410.1007/BF02984069Open DOISearch in Google Scholar
Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National academy of Sciences of the United States of America. 1962;48: 582–592. doi: 10.1073/pnas.48.4.582SueokaNOn the genetic basis of variation and heterogeneity of DNA base compositionProceedings of the National academy of Sciences of the United States of America19624858259210.1073/pnas.48.4.582Open DOISearch in Google Scholar
Freese E. On the evolution of the base composition of DNA. Journal of Theoretical Biology. 1962;3(1): 82–101. doi: 10.1016/S0022-5193(62)80005-8FreeseEOn the evolution of the base composition of DNAJournal of Theoretical Biology1962318210110.1016/S0022-5193(62)80005-8Open DOISearch in Google Scholar
Lewontin RC. The genetic basis of evolutionary change. New York and London: Columbia University Press; 1974.LewontinRCThe genetic basis of evolutionary changeNew York and LondonColumbia University Press1974Search in Google Scholar
Lewontin RC, Hubby JL. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54(2): 595–609. doi: 10.1093/genetics/54.2.595LewontinRCHubbyJLA molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscuraGenetics196654259560910.1093/genetics/54.2.595Open DOISearch in Google Scholar
Dietrich MR. The origins of the neutral theory of molecular evolution. Journal of the History of Biology. 1994;27(1): 21–59. doi: 10.1007/BF01058626DietrichMRThe origins of the neutral theory of molecular evolutionJournal of the History of Biology1994271215910.1007/BF01058626Open DOISearch in Google Scholar
Suarez E, Barahona A. The experimental roots of the neutral theory of molecular evolution. History and Philosophy of the Life Sciences. 1996;18: 55–81.SuarezEBarahonaAThe experimental roots of the neutral theory of molecular evolutionHistory and Philosophy of the Life Sciences1996185581Search in Google Scholar
Palazzo AF, Gregory TR. The case for junk DNA. Plos Genetics. 2014;10(5): e1004351. doi: 10.1371/journal.pgen.1004351PalazzoAFGregoryTRThe case for junk DNAPlos Genetics2014105e100435110.1371/journal.pgen.1004351Open DOISearch in Google Scholar
Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. Plos Genetics. 2014;10(7): e1004525. doi: 10.1371/journal.pgen.1004525RandsCMMeaderSPontingCPLunterG8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineagePlos Genetics2014107e100452510.1371/journal.pgen.1004525Open DOISearch in Google Scholar
Doolittle WF, Brunet TDP. On causal roles and selected effects: our genome is mostly junk. BMC Biology. 2017;15(1): 116. doi: 10.1186/s12915-017-0460-9DoolittleWFBrunetTDPOn causal roles and selected effects: our genome is mostly junkBMC Biology201715111610.1186/s12915-017-0460-9Open DOISearch in Google Scholar
Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics. 1964;49: 725–738. doi: 10.1093/genetics/49.4.725KimuraMCrowJFThe number of alleles that can be maintained in a finite populationGenetics19644972573810.1093/genetics/49.4.725Open DOISearch in Google Scholar
Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nature Genetics. 2022;54(2): 128–133. doi: 10.1038/s41588-021-01005-8DemeulemeesterJDentroSCGerstungMVan LooPBiallelic mutations in cancer genomes reveal local mutational determinantsNature Genetics202254212813310.1038/s41588-021-01005-8Open DOISearch in Google Scholar
Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. Plos Genetics. 2016;12(12): e1006489. doi: 10.1371/journal.pgen.1006489HarpakABhaskarAPritchardJKMutation rate variation is a primary determinant of the distribution of allele frequencies in humansPlos Genetics20161212e100648910.1371/journal.pgen.1006489Open DOISearch in Google Scholar
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, et al. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. bioRxiv. 2024: 2024.08.05.606142. doi: 10.1101/2024.08.05.606142PorubskyDDashnowHSasaniTALogsdonGAHallastPNoyesMDA familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigreebioRxiv20242024.08.05.606142.10.1101/2024.08.05.606142Open DOISearch in Google Scholar
Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proceedings of the National academy of Sciences of the United States of America. 2024;121(28): e2307107121. doi: 10.1073/pnas.2307107121LynchMWeiWYeZPfrenderMThe genome-wide signature of short-term temporal selectionProceedings of the National academy of Sciences of the United States of America202412128e230710712110.1073/pnas.2307107121Open DOISearch in Google Scholar
Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms. Science China Life Sciences. 2014;57(9): 876–888. doi: 10.1007/s11427-014-4704-4YuanDZhuZTanXLiangJZengCZhangJScoring the collective effects of SNPs: association of minor alleles with complex traits in model organismsScience China Life Sciences201457987688810.1007/s11427-014-4704-4Open DOISearch in Google Scholar
Zhu Z, Yuan D, Luo D, Lu X, Huang S. Enrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's disease. Plos One. 2015;10(7): e0133421. doi: 10.1371/journal.pone.0133421ZhuZYuanDLuoDLuXHuangSEnrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's diseasePlos One2015107e013342110.1371/journal.pone.0133421Open DOISearch in Google Scholar
Zhu Z, Man X, Xia M, Huang Y, Yuan D, Huang S. Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics. 2015;106(1): 23–29. doi: 10.1016/j.ygeno.2015.04.002ZhuZManXXiaMHuangYYuanDHuangSCollective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeastGenomics20151061232910.1016/j.ygeno.2015.04.002Open DOISearch in Google Scholar
Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. arXiv. 2012;1209.2911. doi: 10.1007/s11427-014-4704-4YuanDZhuZTanXLiangJZengCZhangJMinor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selectionarXiv20121209.2911.10.1007/s11427-014-4704-4Open DOISearch in Google Scholar
Zhu Z, Lu Q, Wang J, Huang S. Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes. Scientific Reports. 2015;5: 16904. doi: 10.1038/srep16904ZhuZLuQWangJHuangSCollective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genesScientific Reports201551690410.1038/srep16904Open DOISearch in Google Scholar
Kimura M, Ohta T. On some principles governing molecular evolution. Proceedings of the National academy of Sciences of the United States of America. 1974;71(7): 2848–2852. doi: 10.1073/pnas.71.7.2848KimuraMOhtaTOn some principles governing molecular evolutionProceedings of the National academy of Sciences of the United States of America19747172848285210.1073/pnas.71.7.2848Open DOISearch in Google Scholar
Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy IN, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23): 5775–5790.e30. doi: 10.1016/j.cell.2021.10.014QuinodozSAJachowiczJWBhatPOllikainenNBanerjeeAKGoronzyINRNA promotes the formation of spatial compartments in the nucleusCell20211842357755790.e3010.1016/j.cell.2021.10.014Open DOISearch in Google Scholar
Basu A, Bobrovnikov DG, Cieza B, Arcon JP, Qureshi Z, Orozco M, et al. Deciphering the mechanical code of the genome and epigenome. Nature Structural & Molecular Biology. 2022;29(12): 1178–1187. doi: 10.1038/s41594-022-00877-6BasuABobrovnikovDGCiezaBArconJPQureshiZOrozcoMDeciphering the mechanical code of the genome and epigenomeNature Structural & Molecular Biology202229121178118710.1038/s41594-022-00877-6Open DOISearch in Google Scholar
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, et al. Position-dependent function of human sequence-specific transcription factors. Nature. 2024;631(8022): 891–898. doi: 10.1038/s41586-024-07662-zDuttkeSHGuzmanCChangMDelos SantosNPMcDonaldBRXieJPosition-dependent function of human sequence-specific transcription factorsNature2024631802289189810.1038/s41586-024-07662-zOpen DOISearch in Google Scholar
Eder M, Moene CJI, Dauban L, Leemans C, Steensel BV. Functional maps of a genomic locus reveal confinement of an Enhancer by its target gene. bioRxiv. 2024. doi: 10.1101/2024.08.26.609360EderMMoeneCJIDaubanLLeemansCSteenselBVFunctional maps of a genomic locus reveal confinement of an Enhancer by its target genebioRxiv202410.1101/2024.08.26.609360Open DOISearch in Google Scholar
Du AY, Chobirko JD, Zhuo X, Feschotte C, Wang T. Regulatory transposable elements in the encyclopedia of DNA elements. Nature Communications. 2024;15(1): 7594. doi: 10.1038/s41467-024-51921-6DuAYChobirkoJDZhuoXFeschotteCWangTRegulatory transposable elements in the encyclopedia of DNA elementsNature Communications2024151759410.1038/s41467-024-51921-6Open DOISearch in Google Scholar
Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research. 1968;11(3): 247–269. doi: 10.1017/S0016672300011459KimuraMGenetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoallelesGenetical Research196811324726910.1017/S0016672300011459Open DOISearch in Google Scholar
Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915): 725–731. doi: 10.1038/s41586-022-04823-wShenXSongSLiCZhangJSynonymous mutations in representative yeast genes are mostly strongly non-neutralNature2022606791572573110.1038/s41586-022-04823-wOpen DOISearch in Google Scholar
Lu J, Wu CI. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proceedings of the National academy of Sciences of the United States of America. 2005;102(11): 4063–4067. doi: 10.1073/pnas.0500436102LuJWuCIWeak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzeeProceedings of the National academy of Sciences of the United States of America2005102114063406710.1073/pnas.0500436102Open DOISearch in Google Scholar
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, et al. Synthetic genomes unveil the effects of synonymous recoding. bioRxiv. 2024: 2024.06.16.599206. doi: 10.1101/2024.06.16.599206NyergesAChiappino-PepeABudnikBBaas-ThomasMFlynnRYanSSynthetic genomes unveil the effects of synonymous recodingbioRxiv20242024.06.16.599206.10.1101/2024.06.16.599206Open DOISearch in Google Scholar
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, et al. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proceedings of the National academy of Sciences of the United States of America. 2024;121(36): e2405510121. doi: 10.1073/pnas.2405510121RodriguezADiehlJDWrightGSBonarCDLundgrenTJMossMJSynonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA productionProceedings of the National academy of Sciences of the United States of America202412136e240551012110.1073/pnas.2405510121Open DOISearch in Google Scholar
Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, et al. Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biology. 2012;10(9): e1001388. doi: 10.1371/journal.pbio.1001388LefflerEMBullaugheyKMatuteDRMeyerWKSégurelLVenkatARevisiting an old riddle: what determines genetic diversity levels within species?Plos Biology2012109e100138810.1371/journal.pbio.1001388Open DOISearch in Google Scholar
Buffalo V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradox. eLife. 2021;10: e67509. doi: 10.7554/eLife.67509BuffaloVQuantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradoxeLife202110e6750910.7554/eLife.67509Open DOISearch in Google Scholar
Kern AD, Hahn MW. The neutral theory in light of natural selection. Molecular Biology and Evolution. 2018;35(6): 1366–1371. doi: 10.1093/molbev/msy092KernADHahnMWThe neutral theory in light of natural selectionMolecular Biology and Evolution20183561366137110.1093/molbev/msy092Open DOISearch in Google Scholar
Kreitman M. The neutral theory is dead. Long live the neutral theory. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1996;18(8): 678–683. discussion 683. doi: 10.1002/bies.950180812KreitmanMThe neutral theory is dead. Long live the neutral theoryBioessays: News and Reviews in Molecular, Cellular and Developmental Biology1996188678683discussion 683.10.1002/bies.950180812Open DOISearch in Google Scholar
Cann RL, Stoneking AC, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325: 31–36. doi: 10.1038/325031a0CannRLStonekingACWilsonACMitochondrial DNA and human evolutionNature1987325313610.1038/325031a0Open DOISearch in Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution. 1985;39(4): 783–791. doi: 10.2307/2408678FelsensteinJConfidence limits on phylogenies: an approach using the bootstrapEvolution; International Journal of Organic Evolution198539478379110.2307/2408678Open DOISearch in Google Scholar
Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. Journal of Computer Science and Systems Biology. 2008;1: 092–102. doi: 10.4172/jcsb.1000009HuangSThe genetic equidistance result of molecular evolution is independent of mutation ratesJournal of Computer Science and Systems Biology2008109210210.4172/jcsb.1000009Open DOISearch in Google Scholar
Avise JC. Molecular markers, natural history and evolution. New York, NY: Springer; 1994.AviseJCMolecular markers, natural history and evolutionNew York, NYSpringer1994Search in Google Scholar
Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.NeiMKumarSMolecular evolution and phylogeneticsNew YorkOxford University Press2000Search in Google Scholar
Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973;246(5428): 96–98. doi: 10.1038/246096a0OhtaTSlightly deleterious mutant substitutions in evolutionNature19732465428969810.1038/246096a0Open DOISearch in Google Scholar
Huang S. Histone methyltransferases, diet nutrients, and tumor suppressors. Nature Reviews Cancer. 2002;2: 469–476. doi: 10.1038/nrc819HuangSHistone methyltransferases, diet nutrients, and tumor suppressorsNature Reviews Cancer2002246947610.1038/nrc819Open DOISearch in Google Scholar
Huang S. Histone methylation and the initiation of cancer. In: Tollefsbol T. (ed.) Cancer epigenetics. New York: CRC Press; 2008. p. 109–158.HuangSHistone methylation and the initiation of cancerIn:TollefsbolT.(ed.)Cancer epigeneticsNew YorkCRC Press2008109158Search in Google Scholar
Huang S. Inverse relationship between genetic diversity and epigenetic complexity. Nature Precedings. 2009. doi: 10.1038/npre.2009.1751.2HuangSInverse relationship between genetic diversity and epigenetic complexityNature Precedings200910.1038/npre.2009.1751.2Open DOISearch in Google Scholar
Huang S. The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century. Biological Theory. 2010;5: 40–52. doi: 10.1162/BIOT_a_00021HuangSThe overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a centuryBiological Theory20105405210.1162/BIOT_a_00021Open DOISearch in Google Scholar
Santoni G, Astori S, Leleu M, Glauser L, Zamora SA, Schioppa M, et al. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science. 2024;385(6707): eadg9982. doi: 10.1126/science.adg9982SantoniGAstoriSLeleuMGlauserLZamoraSASchioppaMChromatin plasticity predetermines neuronal eligibility for memory trace formationScience20243856707eadg998210.1126/science.adg9982Open DOISearch in Google Scholar
Aquadro CF. Why is the genome variable? Insights from Drosophila. Trends in Genetics. 1992;8(10): 355–362. doi: 10.1016/0168-9525(92)90281-8AquadroCFWhy is the genome variable? Insights from DrosophilaTrends in Genetics199281035536210.1016/0168-9525(92)90281-8Open DOISearch in Google Scholar
Lewontin RC. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics. 1991;128(4): 657–662. doi: 10.1093/genetics/128.4.657LewontinRCTwenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone?Genetics1991128465766210.1093/genetics/128.4.657Open DOISearch in Google Scholar
Bateson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: Macmillan; 1894.BatesonWMaterials for the study of variation treated with especial regard to discontinuity in the origin of speciesLondonMacmillan1894Search in Google Scholar
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 1979;76: 5269–5273. doi: 10.1073/pnas.76.10.5269NeiMLiWHMathematical model for studying genetic variation in terms of restriction endonucleasesProceedings of the National Academy of Sciences of the United States of America1979765269527310.1073/pnas.76.10.5269Open DOISearch in Google Scholar
Steux C, Szpiech ZA. The maintenance of deleterious variation in wild Chinese rhesus macaques. Genome Biology and Evolution. 2024;16(6): evae115. doi: 10.1093/gbe/evae115SteuxCSzpiechZAThe maintenance of deleterious variation in wild Chinese rhesus macaquesGenome Biology and Evolution2024166evae11510.1093/gbe/evae115Open DOISearch in Google Scholar
Ellegren H, Galtier N. Determinants of genetic diversity. Nature Reviews Genetics. 2016;17(7): 422–433. doi: 10.1038/nrg.2016.58EllegrenHGaltierNDeterminants of genetic diversityNature Reviews Genetics201617742243310.1038/nrg.2016.58Open DOISearch in Google Scholar
Nevo E. Genetic diversity. In: Levin SA. (ed.) Encyclopedia of biodiversity. Amsterdam: Elsevier Inc; 2001. p. 662–677. doi: 10.1016/B978-0-12-384719-5.00065-4NevoEGenetic diversityIn:LevinSA(ed.)Encyclopedia of biodiversityAmsterdamElsevier Inc200166267710.1016/B978-0-12-384719-5.00065-4Open DOISearch in Google Scholar
Yang J, Lusk R, Li WH. Organismal complexity, protein complexity, and gene duplicability. Proceedings of the National academy of Sciences of the United States of America. 2003;100(26): 15661–15665. doi: 10.1073/pnas.2536672100YangJLuskRLiWHOrganismal complexity, protein complexity, and gene duplicabilityProceedings of the National academy of Sciences of the United States of America200310026156611566510.1073/pnas.2536672100Open DOISearch in Google Scholar
Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424(6945): 147–151. doi: 10.1038/nature01763LevineMTjianRTranscription regulation and animal diversityNature2003424694514715110.1038/nature01763Open DOISearch in Google Scholar
Vinogradov AE, Anatskaya OV. Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Research. 2007;35(19): 6350–6356. doi: 10.1093/nar/gkm723VinogradovAEAnatskayaOVOrganismal complexity, cell differentiation and gene expression: human over mouseNucleic Acids Research200735196350635610.1093/nar/gkm723Open DOISearch in Google Scholar
Bonner JT. Perspective: the size-complexity rule. Evolution; International Journal of Organic Evolution. 2004;58: 1883–1890. doi: 10.1111/j.0014-3820.2004.tb00476.xBonnerJTPerspective: the size-complexity ruleEvolution; International Journal of Organic Evolution2004581883189010.1111/j.0014-3820.2004.tb00476.xOpen DOISearch in Google Scholar
Carroll SB. Chance and necessity: the evolution of morphological complexity and diversity. Nature. 2001;409(6823): 1102–1109. doi: 10.1038/35059227CarrollSBChance and necessity: the evolution of morphological complexity and diversityNature200140968231102110910.1038/35059227Open DOISearch in Google Scholar
McShea DW. Metazoan complexity and evolution: is there a trend? Evolution; International Journal of Organic Evolution. 1996;50: 477–492. doi: 10.2307/2410824McSheaDWMetazoan complexity and evolution: is there a trend?Evolution; International Journal of Organic Evolution19965047749210.2307/2410824Open DOISearch in Google Scholar
Bonner JT. The evolution of complexity. Princeton, NJ: Princeton University Press; 1988.BonnerJTThe evolution of complexityPrinceton, NJPrinceton University Press1988Search in Google Scholar
Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Computational Biology. 2006;2(5): e48. doi: 10.1371/journal.pcbi.0020048VogelCChothiaCProtein family expansions and biological complexityPLoS Computational Biology200625e4810.1371/journal.pcbi.0020048Open DOISearch in Google Scholar
Remy JJ. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology: CB. 2010;20(20): R877–R878. doi: 10.1016/j.cub.2010.08.013RemyJJStable inheritance of an acquired behavior in Caenorhabditis elegansCurrent Biology: CB20102020R877R87810.1016/j.cub.2010.08.013Open DOISearch in Google Scholar
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727): 1466–1469. doi: 10.1126/science.1108190AnwayMDCuppASUzumcuMSkinnerMKEpigenetic transgenerational actions of endocrine disruptors and male fertilityScience200530857271466146910.1126/science.1108190Open DOISearch in Google Scholar
Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine. 2007;356(7): 697–705. doi: 10.1056/NEJMoa064522HitchinsMPWongJJSuthersGSuterCMMartinDIHawkinsNJInheritance of a cancer-associated MLH1 germ-line epimutationNew England Journal of Medicine2007356769770510.1056/NEJMoa064522Open DOISearch in Google Scholar
Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proceedings of the National academy of Sciences of the United States of America. 2006;103(46): 17308–17312. doi: 10.1073/pnas.0607090103CropleyJESuterCMBeckmanKBMartinDIGerm-line epigenetic modification of the murine A vy allele by nutritional supplementationProceedings of the National academy of Sciences of the United States of America200610346173081731210.1073/pnas.0607090103Open DOISearch in Google Scholar
Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nature Genetics. 2016;48(5): 497–499. doi: 10.1038/ng.3527HuypensPSassSWuMDyckhoffDTschöpMTheisFEpigenetic germline inheritance of diet-induced obesity and insulin resistanceNature Genetics201648549749910.1038/ng.3527Open DOISearch in Google Scholar
Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics. 2022;23(6): 325–341. doi: 10.1038/s41576-021-00438-5Fitz-JamesMHCavalliGMolecular mechanisms of transgenerational epigenetic inheritanceNature Reviews Genetics202223632534110.1038/s41576-021-00438-5Open DOISearch in Google Scholar
Yu J, Zhang Y, Fang Y, Paulo JA, Yaghoubi D, Hua X, et al. A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance. Cell. 2024;187: 5010.e–5028.e. doi: 10.1016/j.cell.2024.07.006YuJZhangYFangYPauloJAYaghoubiDHuaXA replisome-associated histone H3-H4 chaperone required for epigenetic inheritanceCell20241875010.e5028.e10.1016/j.cell.2024.07.006Open DOISearch in Google Scholar
Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. Science China Life Sciences. 2013;56: 254–261. doi: 10.1007/s11427-013-4452-xHuTLongMYuanDZhuZHuangYHuangSThe genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century laterScience China Life Sciences20135625426110.1007/s11427-013-4452-xOpen DOISearch in Google Scholar
Huang S. New thoughts on an old riddle: what determines genetic diversity within and between species? Genomics. 2016;108(1): 3–10. doi: 10.1016/j.ygeno.2016.01.008HuangSNew thoughts on an old riddle: what determines genetic diversity within and between species?Genomics2016108131010.1016/j.ygeno.2016.01.008Open DOISearch in Google Scholar
Huang S. The maximum genetic diversity theory of molecular evolution. Communications in Information and Systems. 2023;23: 359–392. doi: 10.4310/CIS.2023.v23.n4.a1HuangSThe maximum genetic diversity theory of molecular evolutionCommunications in Information and Systems20232335939210.4310/CIS.2023.v23.n4.a1Open DOISearch in Google Scholar
Zhu Z, Han C, Huang S. New insights shed light on the enigma of genetic diversity and species complexity. Science China Life Sciences. 2024;67: 2774–2776. doi: 10.1007/s11427-023-2610-2ZhuZHanCHuangSNew insights shed light on the enigma of genetic diversity and species complexityScience China Life Sciences2024672774277610.1007/s11427-023-2610-2Open DOISearch in Google Scholar
Orr HA. Adaptation and the cost of complexity. Evolution; International Journal of Organic Evolution. 2000;54(1): 13–20. doi: 10.1111/j.0014-3820.2000.tb00002.xOrrHAAdaptation and the cost of complexityEvolution; International Journal of Organic Evolution2000541132010.1111/j.0014-3820.2000.tb00002.xOpen DOISearch in Google Scholar
Parts L, Batté A, Lopes M, Yuen MW, Laver M, San Luis BJ, et al. Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology. 2021;17(5): e10138. doi: 10.15252/msb.202010138PartsLBattéALopesMYuenMWLaverMSan LuisBJNatural variants suppress mutations in hundreds of essential genesMolecular Systems Biology2021175e1013810.15252/msb.202010138Open DOISearch in Google Scholar
Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature. 1993;366(6452): 223–227. doi: 10.1038/366223a0GouldSJEldredgeNPunctuated equilibrium comes of ageNature1993366645222322710.1038/366223a0Open DOISearch in Google Scholar
Rudman SM, Greenblum SI, Rajpurohit S, Betancourt NJ, Hanna J, Tilk S, et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science. 2022;375(6586): eabj7484. doi: 10.1126/science.abj7484RudmanSMGreenblumSIRajpurohitSBetancourtNJHannaJTilkSDirect observation of adaptive tracking on ecological time scales in DrosophilaScience20223756586eabj748410.1126/science.abj7484Open DOISearch in Google Scholar
Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336(6085): 1157–1160. doi: 10.1126/science.1217405ShovalOSheftelHShinarGHartYRamoteOMayoAEvolutionary trade-offs, Pareto optimality, and the geometry of phenotype spaceScience201233660851157116010.1126/science.1217405Open DOISearch in Google Scholar
Wang M, Wang D, Yu J, Huang S. Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins. PeerJ. 2020;8: e9983. doi: 10.7717/peerj.9983WangMWangDYuJHuangSEnrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteinsPeerJ20208e998310.7717/peerj.9983Open DOISearch in Google Scholar
Bergsten J. A review of long-branch attraction. Cladistics: the International Journal of the Willi Hennig Society. 2005;21: 163–193. doi: 10.1111/j.1096-0031.2005.00059.xBergstenJA review of long-branch attractionCladistics: the International Journal of the Willi Hennig Society20052116319310.1111/j.1096-0031.2005.00059.xOpen DOISearch in Google Scholar
Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Science China Life Sciences. 2012;55: 709–725. doi: 10.1007/s11427-012-4350-7HuangSPrimate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiersScience China Life Sciences20125570972510.1007/s11427-012-4350-7Open DOISearch in Google Scholar
Bickel D. A generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spaces. Zenodo. 2021. doi: 10.5281/zenodo.5123388BickelDA generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spacesZenodo202110.5281/zenodo.5123388Open DOISearch in Google Scholar
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, et al. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science. 2025;387(6737): 1001–1007. doi: 10.1126/science.ads0215ChenZBaezaJAChenCGonzalezMTGonzálezVLGreveCA genome-based phylogeny for Mollusca is concordant with fossils and morphologyScience202538767371001100710.1126/science.ads0215Open DOISearch in Google Scholar
Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell. 2024;187(6): 1547–1562.e13. doi: 10.1016/j.cell.2024.01.052MaoYHarveyWTPorubskyDMunsonKMHoekzemaKLewisAPStructurally divergent and recurrently mutated regions of primate genomesCell2024187615471562.e1310.1016/j.cell.2024.01.052Open DOISearch in Google Scholar
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated genetic variation in humans and primates. Science (New York, N.Y.). 2023;380(6648): eabn8153. doi: 10.1126/science.abn8197GaoHHampTEdeJSchraiberJGMcRaeJSinger-BerkMThe landscape of tolerated genetic variation in humans and primatesScience (New York, N.Y.)20233806648eabn815310.1126/science.abn8197Open DOISearch in Google Scholar
Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science (New York, N.Y.). 2007;316(5822): 222–234. doi: 10.1126/science.1139247Rhesus Macaque Genome Sequencing and Analysis ConsortiumGibbsRARogersJKatzeMGBumgarnerRWeinstockGMEvolutionary and biomedical insights from the rhesus macaque genomeScience (New York, N.Y.)2007316582222223410.1126/science.1139247Open DOISearch in Google Scholar
Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Reviews. 2003;5(1): 52–61.KuikenCKorberBShaferRWHIV sequence databasesAIDS Reviews2003515261Search in Google Scholar
Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055): 69–87. doi: 10.1038/nature04072Chimpanzee Sequencing and Analysis ConsortiumInitial sequence of the chimpanzee genome and comparison with the human genomeNature20054377055698710.1038/nature04072Open DOISearch in Google Scholar
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, et al. Comparative genomics of macaques and integrated insights into genetic variation and population history. bioRxiv. 2024: 2024.04.07.588379. doi: 10.1101/2024.04.07.588379ZhangSXuNFuLYangXLiYYangZComparative genomics of macaques and integrated insights into genetic variation and population historybioRxiv20242024.04.07.588379.10.1101/2024.04.07.588379Open DOISearch in Google Scholar
Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, et al. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nature Ecology and Evolution. 2025;9(1): 42–56. doi: 10.1038/s41559-024-02596-1OrkinJDKudernaLFKHermosilla-AlbalaNFontsereCAylwardMLJaniakMCEcological and anthropogenic effects on the genomic diversity of lemurs in MadagascarNature Ecology and Evolution202591425610.1038/s41559-024-02596-1Open DOISearch in Google Scholar
Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, et al. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science. 2025;387(6734): eadq7347. doi: 10.1126/science.adq7347OberstallerJXuSNaskarDZhangMWangCGibbonsJSupersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasitesScience20253876734eadq734710.1126/science.adq7347Open DOISearch in Google Scholar
Wang M, Huang S. The collective effects of genetic variants and complex traits. Journal of Human Genetics. 2023;68: 255–262. doi: 10.1038/s10038-022-01105-1WangMHuangSThe collective effects of genetic variants and complex traitsJournal of Human Genetics20236825526210.1038/s10038-022-01105-1Open DOISearch in Google Scholar
Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al. The impact of rare protein coding genetic variation on adult cognitive function. Nature Genetics. 2023;55(6): 927–938. doi: 10.1038/s41588-023-01398-8ChenCYTianRGeTLamMSanchez-AndradeGSinghTThe impact of rare protein coding genetic variation on adult cognitive functionNature Genetics202355692793810.1038/s41588-023-01398-8Open DOISearch in Google Scholar
Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki M, Zekavat SM, et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nature Neuroscience. 2016;19(12): 1563–1565. doi: 10.1038/nn.4404GannaAGenoveseGHowriganDPByrnesAKurkiMZekavatSMUltra-rare disruptive and damaging mutations influence educational attainment in the general populationNature Neuroscience201619121563156510.1038/nn.4404Open DOISearch in Google Scholar
Ganna A, Satterstrom FK, Zekavat SM, Das I, Kurki MI, Churchhouse C, et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. American Journal of Human Genetics. 2018;102(6): 1204–1211. doi: 10.1016/j.ajhg.2018.05.002GannaASatterstromFKZekavatSMDasIKurkiMIChurchhouseCQuantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrumAmerican Journal of Human Genetics201810261204121110.1016/j.ajhg.2018.05.002Open DOISearch in Google Scholar
Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, et al. The copy number variant architecture of psy-chopathology and cognitive development in the ABCD® study. medRxiv. 2024: 2024.05.14.24307376. doi: 10.1101/2024.05.14.24307376ShaZSunKYJungBBarzilayRMooreTMAlmasyLThe copy number variant architecture of psy-chopathology and cognitive development in the ABCD® studymedRxiv20242024.05.14.24307376.10.1101/2024.05.14.24307376Open DOISearch in Google Scholar
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, et al. Genetic architecture of the structural connectome. Nature Communications. 2024;15(1): 1962. doi: 10.1038/s41467-024-46023-2WainbergMFordeNJMansourSKerrebijnIMedlandSEHawcoCGenetic architecture of the structural connectomeNature Communications2024151196210.1038/s41467-024-46023-2Open DOISearch in Google Scholar
Zhang S, Xu N, Fu L, Yang X, Ma K, Li Y, et al. Integrated analysis of the complete sequence of a macaque genome. Nature. 2025. doi: 10.1038/s41586-025-08596-wZhangSXuNFuLYangXMaKLiYIntegrated analysis of the complete sequence of a macaque genomeNature202510.1038/s41586-025-08596-wOpen DOISearch in Google Scholar
Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM. Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proceedings. Biological Sciences/the Royal Society. 2017;284(1862): 20162738. doi: 10.1098/rspb.2016.2738JolyMMichelettaJDe MarcoALangermansJASterckEHMWallerBMComparing physical and social cognitive skills in macaque species with different degrees of social toleranceProceedings. Biological Sciences/the Royal Society201728418622016273810.1098/rspb.2016.2738Open DOISearch in Google Scholar
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648): 906–913. doi: 10.1126/science.abn7829KudernaLFKGaoHJaniakMCKuhlwilmMOrkinJDBataillonTA global catalog of whole-genome diversity from 233 primate speciesScience2023380664890691310.1126/science.abn7829Open DOISearch in Google Scholar
de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354(6311): 477–481. doi: 10.1126/science.aag2602de ManuelMKuhlwilmMFrandsenPSousaVCDesaiTPrado-MartinezJChimpanzee genomic diversity reveals ancient admixture with bonobosScience2016354631147748110.1126/science.aag2602Open DOISearch in Google Scholar
Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930): 1035–1044. doi: 10.1126/science.1172257TishkoffSAReedFAFriedlaenderFREhretCRanciaroAFromentAThe genetic structure and history of Africans and African AmericansScience200932459301035104410.1126/science.1172257Open DOISearch in Google Scholar
Lynn R. Race differences in intelligence. Augusta, GA: Washington Summit Publishers; 2006.LynnRRace differences in intelligenceAugusta, GAWashington Summit Publishers2006Search in Google Scholar
Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167(3): 657–669.e21. doi: 10.1016/j.cell.2016.09.025NédélecYSanzJBaharianGSzpiechZAPacisADumaineAGenetic ancestry and natural selection drive population differences in immune responses to pathogensCell20161673657669.e2110.1016/j.cell.2016.09.025Open DOISearch in Google Scholar
Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3): 643–656.e17. doi: 10.1016/j.cell.2016.09.024QuachHRotivalMPothlichetJLohYEDannemannMZidaneNGenetic adaptation and neandertal admixture shaped the immune system of human populationsCell20161673643656.e1710.1016/j.cell.2016.09.024Open DOISearch in Google Scholar
Lei X, Yuan D, Zhu Z, Huang S. Collective effects of common SNPs and risk prediction in lung cancer. Heredity. 2018;121: 537–547. doi: 10.1038/s41437-018-0063-4LeiXYuanDZhuZHuangSCollective effects of common SNPs and risk prediction in lung cancerHeredity201812153754710.1038/s41437-018-0063-4Open DOISearch in Google Scholar
He P, Lei X, Yuan D, Zhu Z, Huang S. Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports. 2017;7(1): 11661. doi: 10.1038/s41598-017-12104-0HePLeiXYuanDZhuZHuangSAccumulation of minor alleles and risk prediction in schizophreniaScientific Reports2017711166110.1038/s41598-017-12104-0Open DOISearch in Google Scholar
Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the National academy of Sciences of the United States of America. 2018;115(1): 151–156. doi: 10.1073/pnas.1707227114SanjakJSSidorenkoJRobinsonMRThorntonKRVisscherPMEvidence of directional and stabilizing selection in contemporary humansProceedings of the National academy of Sciences of the United States of America2018115115115610.1073/pnas.1707227114Open DOISearch in Google Scholar
Amos W, Elhaik E. Unexpected D-tour ahead: why the D-statistic, applied to humans, measures mutation rate variation not Neanderthal introgression. bioRxiv. 2025. Available from: https://www.biorxiv.org/content/10.1101/2024.12.31.630954v2. doi: 10.1101/2024.12.31.630954 (Accessed date: December 31, 2024)AmosWElhaikEUnexpected D-tour ahead: why the D-statistic, applied to humans, measures mutation rate variation not Neanderthal introgressionbioRxiv2025Available from: https://www.biorxiv.org/content/10.1101/2024.12.31.630954v2.10.1101/2024.12.31.630954(Accessed date: December 31, 2024)Open DOISearch in Google Scholar
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science. 2023;381(6664): eadd1250. doi: 10.1126/science.add1250HortonCAAlexandariAMHayesMGBMarklundESchaepeJMAdithamAKShort tandem repeats bind transcription factors to tune eukaryotic gene expressionScience20233816664eadd125010.1126/science.add1250Open DOISearch in Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414): 57–74. doi: 10.1038/nature11247ENCODE Project ConsortiumAn integrated encyclopedia of DNA elements in the human genomeNature20124897414577410.1038/nature11247Open DOISearch in Google Scholar
Mattick JS. A Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAs. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 2023;45(9): e2300080. doi: 10.1002/bies.202300080MattickJSA Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAsBioessays: News and Reviews in Molecular, Cellular and Developmental Biology2023459e230008010.1002/bies.202300080Open DOISearch in Google Scholar
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, et al. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science. 2025;387(6734): eadm9466. doi: 10.1126/science.adm9466MeneuLChapardCSerizayJWestbrookARouthierERuaultMSequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleusScience20253876734eadm946610.1126/science.adm9466Open DOISearch in Google Scholar
Li A, Evans DS, Cummings S, Ideker T. Somatic mutation as an explanation for epigenetic aging. Nature Aging. 2025. doi: 10.1038/s43587-024-00794-xLiAEvansDSCummingsSIdekerTSomatic mutation as an explanation for epigenetic agingNature Aging202510.1038/s43587-024-00794-xOpen DOISearch in Google Scholar
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, et al. Quantifying constraint in the human mitochondrial genome. Nature. 2024;635: 390–397. doi: 10.1038/s41586-024-08048-xLakeNJMaKLiuWBattleSLLaricchiaKMTiaoGQuantifying constraint in the human mitochondrial genomeNature202463539039710.1038/s41586-024-08048-xOpen DOISearch in Google Scholar
Couce A, Limdi A, Magnan M, Owen SV, Herren CM, Lenski RE, et al. Changing fitness effects of mutations through long-term bacterial evolution. Science. 2024;383(6681): eadd1417. doi: 10.1126/science.add1417CouceALimdiAMagnanMOwenSVHerrenCMLenskiREChanging fitness effects of mutations through long-term bacterial evolutionScience20243836681eadd141710.1126/science.add1417Open DOISearch in Google Scholar
Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell. 2009;138(4): 774–786. doi: 10.1016/j.cell.2009.07.038HalabiNRivoireOLeiblerSRanganathanRProtein sectors: evolutionary units of three-dimensional structureCell2009138477478610.1016/j.cell.2009.07.038Open DOISearch in Google Scholar
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, et al. Structural polymorphism and diversity of human segmental duplications. Nature Genetics. 2025;57(2): 390–401. doi: 10.1038/s41588-024-02051-8JeongHDishuckPCYooDHarveyWTMunsonKMLewisAPStructural polymorphism and diversity of human segmental duplicationsNature Genetics202557239040110.1038/s41588-024-02051-8Open DOISearch in Google Scholar
Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, et al. Bigger genomes provide environment-dependent growth benefits in grasses. The New Phytologist. 2024;244(5): 2049–2061. doi: 10.1111/nph.20150SimpsonKJMianSForrestelEJHackelJMortonJALeitchARBigger genomes provide environment-dependent growth benefits in grassesThe New Phytologist202424452049206110.1111/nph.20150Open DOISearch in Google Scholar
Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, et al. The mutational landscape of human somatic and germline cells. Nature. 2021;597(7876): 381–386. doi: 10.1038/s41586-021-03822-7MooreLCaganACoorensTHHNevilleMDCSanghviRSandersMAThe mutational landscape of human somatic and germline cellsNature2021597787638138610.1038/s41586-021-03822-7Open DOISearch in Google Scholar
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, et al. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. Nature Aging. 2024;4(9): 1211–1230. doi: 10.1038/s43587-024-00672-6RuYDengXChenJZhangLXuZLvQMaternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNANature Aging2024491211123010.1038/s43587-024-00672-6Open DOISearch in Google Scholar
Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. Human adaptation to diverse biomes over the past 3 million years. Science. 2023;380(6645): 604–608. doi: 10.1126/science.abq1288ZellerETimmermannAYunKSRaiaPSteinKRuanJHuman adaptation to diverse biomes over the past 3 million yearsScience2023380664560460810.1126/science.abq1288Open DOISearch in Google Scholar
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, et al. Genetic diversity loss in the Anthropocene. Science. 2022;377(6613): 1431–1435. doi: 10.1126/science.abn5642Exposito-AlonsoMBookerTRCzechLGillespieLHateleySKyriazisCCGenetic diversity loss in the AnthropoceneScience202237766131431143510.1126/science.abn5642Open DOISearch in Google Scholar
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature. 2024;632(8026): 808–814. doi: 10.1038/s41586-024-07731-3GrossNMaestreFTLiancourtPBerdugoMMartinRGozaloBUnforeseen plant phenotypic diversity in a dry and grazed worldNature2024632802680881410.1038/s41586-024-07731-3Open DOISearch in Google Scholar
Jenkin F. The origin of species. The North British Review. 1867;46: 277–318.JenkinFThe origin of speciesThe North British Review186746277318Search in Google Scholar
Goldschmidt R. The material basis of evolution. New Haven, CT: Yale University Press; 1940.GoldschmidtRThe material basis of evolutionNew Haven, CTYale University Press1940Search in Google Scholar
Forsdyke DR. Evolutionary bioinformatics. New York: Springer; 2011.ForsdykeDREvolutionary bioinformaticsNew YorkSpringer2011Search in Google Scholar
Heng HH. Genome chaos: rethinking genetics, evolution, and molecular medicine. Cambridge, MA, USA: Academic Press Elsevier; 2019.HengHHGenome chaos: rethinking genetics, evolution, and molecular medicineCambridge, MA, USAAcademic Press Elsevier2019Search in Google Scholar
Zhang Y. The genetic equidistance and maximum genetic diversity hypothesis: smoke and mirrors? bioRxiv. 2023. doi: 10.1101/2023.02.14.528494ZhangYThe genetic equidistance and maximum genetic diversity hypothesis: smoke and mirrors?bioRxiv202310.1101/2023.02.14.528494Open DOISearch in Google Scholar
Huang S. A rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesis. Zenodo. 2025. doi: 10.5281/zenodo.14927073HuangSA rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesisZenodo202510.5281/zenodo.14927073Open DOISearch in Google Scholar
Yuan D, Lei X, Gui Y, Zhu Z, Wang M, Zhang Y, et al. Modern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNA. bioRxiv. 2017. doi: 10.1101/101410YuanDLeiXGuiYZhuZWangMZhangYModern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNAbioRxiv201710.1101/101410Open DOISearch in Google Scholar
Huang S. Examining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in press. bioRxiv. 2023. doi: 10.1101/2023.11.09.566475HuangSExamining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in pressbioRxiv202310.1101/2023.11.09.566475Open DOISearch in Google Scholar