This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Layer PG. Postgenomik, Evo-Devo und die Wiederkehr teleologischer Ideen. Naturwiss Rundsch. 2021;74(5):228–37.LayerPGPostgenomik, Evo-Devo und die Wiederkehr teleologischer IdeenNaturwiss Rundsch202174522837Search in Google Scholar
Gerhart J, Kirschner M. The theory of facilitated variation. Proc Natl Acad Sci U S A.2007;104(Suppl 1):8582–9.GerhartJKirschnerMThe theory of facilitated variationProc Natl Acad Sci U S A2007104Suppl 185829Search in Google Scholar
Laland K, Uller T, Feldman M, Al. E. Does evolutionary theory need a rethink? Nature. 2014;514:161–4.LalandKUllerTFeldmanMAlEDoes evolutionary theory need a rethink?Nature20145141614Search in Google Scholar
Pigliucci M, Müller G. Evolution - The Extended Synthesis. MIT Press, Cambridge; 2010.PigliucciMMüllerGEvolution - The Extended SynthesisMIT PressCambridge2010Search in Google Scholar
Gould SJ, Lewontin RC. The spandrels of San Marco and. Proc R Soc Lond B. 1979;205:581–98.GouldSJLewontinRCThe spandrels of San Marco andProc R Soc Lond B197920558198Search in Google Scholar
Thomson KS. The meanings of evolution. Am Sci. 1982;70(5): 529–31.ThomsonKSThe meanings of evolutionAm Sci198270552931Search in Google Scholar
Gutmann WF, Weingarten M. Grundlagen von Konstruktionsmorphologie und organismischer Evolutionstheorie. In: Aufsätze u Reden Senck naturf Ges. Frankfurt a.M.: Verlag Waldemar Kramer; 1992. p. 51–68.GutmannWFWeingartenMGrundlagen von Konstruktionsmorphologie und organismischer EvolutionstheorieIn:Aufsätze u Reden Senck naturf GesFrankfurt a.M.Verlag Waldemar Kramer19925168Search in Google Scholar
Waddington CH. Canalization of Development and the Inheritance of Acquired Characters. Nature. 1942;150:563–5.WaddingtonCHCanalization of Development and the Inheritance of Acquired CharactersNature19421505635Search in Google Scholar
West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst Vol 20. 1989;20(1):249–78.West-EberhardMJPhenotypic plasticity and the origins of diversityAnnu Rev Ecol Syst Vol 20198920124978Search in Google Scholar
Gilbert SF, Barresi MJF. Developmental Biology, 12th Edition. Sinauer; 2020.GilbertSFBarresiMJFDevelopmental Biology12th EditionSinauer2020Search in Google Scholar
Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999 Nov;23(3):314–8.MorganHDSutherlandHGEMartinDIKWhitelawEEpigenetic inheritance at the agouti locus in the mouseNat Genet1999Nov2333148Search in Google Scholar
van Steenwyk G, Roszkowski M, Manuella F, Franklin TB, Mansuy IM. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ Epigenetics. 2018 Apr 1;4(2):1–8.van SteenwykGRoszkowskiMManuellaFFranklinTBMansuyIMTransgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generationEnviron Epigenetics2018Apr14218Search in Google Scholar
Skinner M, Mannikam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endochrinol Metab. 2010;21:214–22.SkinnerMMannikamMGuerrero-BosagnaCEpigenetic transgenerational actions of environmental factors in disease etiologyTrends Endochrinol Metab20102121422Search in Google Scholar
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9.GappKJawaidASarkiesPBohacekJPelczarPPradosJImplication of sperm RNAs in transgenerational inheritance of the effects of early trauma in miceNat Neurosci20141756679Search in Google Scholar
Mayr E. Die Entwicklung der biologischen Gedankenwelt: Vielfalt, Evolution und Vererbung. Springer; 2005.MayrEDie Entwicklung der biologischen Gedankenwelt: Vielfalt, Evolution und VererbungSpringer2005Search in Google Scholar
Mayr E. The objects of selection. Proc Natl Acad Sci USA. 1997;94(6):2091–4. pnas.org/doi/full/10.1073/pnas.94.6.2091MayrEThe objects of selectionProc Natl Acad Sci USA199794620914pnas.org/doi/full/10.1073/pnas.94.6.2091Search in Google Scholar
Amundson R. The changing role of the embryo in evolutionary thought: roots of evo-devo. Cambridge University Press; 2005.AmundsonRThe changing role of the embryo in evolutionary thought: roots of evo-devoCambridge University Press2005Search in Google Scholar
Lewontin RC. Population Genetics. Annu Rev Genet. 1973 Dec;7(1):1–17.LewontinRCPopulation GeneticsAnnu Rev Genet1973Dec71117Search in Google Scholar
Endler J. Natural Selection in the Wild. Princeton University Press; 1986.EndlerJNatural Selection in the WildPrinceton University Press1986Search in Google Scholar
Monod J. Zufall und Notwendigkeit. Philosophische Fragen der modernen Biologie. Piper Verlag; 1971.MonodJZufall und Notwendigkeit. Philosophische Fragen der modernen BiologiePiper Verlag1971Search in Google Scholar
Beadle GW, Tatum EL. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci. 1941;27(11):499–506.BeadleGWTatumELGenetic Control of Biochemical Reactions in NeurosporaProc Natl Acad Sci19412711499506Search in Google Scholar
Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. Protein function the post-genomic era. Nature. 2000;405(6788):823–6..EisenbergDMarcotteEMXenariosIYeatesTOProtein function the post-genomic eraNature200040567888236Search in Google Scholar
Nicholson DJ, Dupré J. Everything Flows. Towards a Processual Philosophy of Biology. Nicholson DJ, Dupré J, editors. Oxford University Press; 2018.NicholsonDJDupréJEverything Flows. Towards a Processual Philosophy of BiologyNicholsonDJDupréJeditors.Oxford University Press2018Search in Google Scholar
Gilbert SF, Epel D. Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution: An Integrated Approach to Embryology, Evolution, and Medicine. Sinauer Assoc.; 2009.GilbertSFEpelDEcological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution: An Integrated Approach to Embryology, Evolution, and MedicineSinauer Assoc.2009Search in Google Scholar
Waddington CH. Canalization of Development and the Inheritance of Acquired Characters. Nature. 1942;150:563–5.WaddingtonCHCanalization of Development and the Inheritance of Acquired CharactersNature19421505635Search in Google Scholar
Goldschmidt R. Intersexuality and Development. Am Nat. 1938;72(740):228–242.GoldschmidtRIntersexuality and DevelopmentAm Nat193872740228242Search in Google Scholar
Turner JS. Purpose and desire. What makes something “alive” and why modern Darwinism has failed to explain it. HarperCollins Publishers; 2017.TurnerJSPurpose and desire. What makes something “alive” and why modern Darwinism has failed to explain itHarperCollins Publishers2017Search in Google Scholar
Minelli A. Forms of Becoming. The Evolutionary Biology of Development. Princeton University Press; 2009.MinelliAForms of Becoming. The Evolutionary Biology of DevelopmentPrinceton University Press2009Search in Google Scholar
Gould SJ, Eldredge N. Punctuated Equilibrium at the Third Stage. Syst Zool. 1986;35(1):143.GouldSJEldredgeNPunctuated Equilibrium at the Third StageSyst Zool1986351143Search in Google Scholar
Kleinschmidt O. Eine Monographie des Wanderfalken und zugleich eine Studie über das Wesen der Rasse in freier Natur. Berajah, Zoographia Infinita Halle. 1927;126.KleinschmidtOEine Monographie des Wanderfalken und zugleich eine Studie über das Wesen der Rasse in freier NaturBerajah, Zoographia Infinita Halle1927126Search in Google Scholar
Beleites M. Umweltresonanz. Telesma-Verlag, Treuenbrietzen, Germany; 2014.BeleitesMUmweltresonanzTelesma-Verlag, TreuenbrietzenGermany2014Search in Google Scholar
Layer P, Lüttge U. Faden oder Kugel und die Landnahme von Flora und Fauna. Naturwiss Rundsch. 2020;73(12):572–85.LayerPLüttgeUFaden oder Kugel und die Landnahme von Flora und FaunaNaturwiss Rundsch2020731257285Search in Google Scholar
Fields C, Levin M. Does Evolution Have a Target Morphology? Organisms. 2020;4(1):57–76.FieldsCLevinMDoes Evolution Have a Target Morphology?Organisms2020415776Search in Google Scholar
Conway-Morris S. Darwin’s dilemma: The realities of the Cambrian “explosion.” Phil Trans Royal Soc B: Biological Sciences. 2006;361(1470):1069–1083.Conway-MorrisSDarwin’s dilemma: The realities of the Cambrian “explosion.”Phil Trans Royal Soc B: Biological Sciences2006361147010691083Search in Google Scholar
Lange A, Nemeschkal HL, Müller GB. A threshold model for polydactyly. Prog Biophys Mol Biol. 2018;137:1–11.LangeANemeschkalHLMüllerGBA threshold model for polydactylyProg Biophys Mol Biol2018137111Search in Google Scholar
Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, et al. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci. 2015;282(1813): 20151019.LalandKNUllerTFeldmanMWSterelnyKMüllerGBMoczekAThe extended evolutionary synthesis: its structure, assumptions and predictionsProc Biol Sci2015282181320151019Search in Google Scholar
Tribes E, Lewontin R. Altenberg 16: An Exposé Of The Evolution Industry. Evolution (NY). 2008;TribesELewontinRAltenberg 16: An Exposé Of The Evolution IndustryEvolution (NY)2008Search in Google Scholar
Austin CJ. The Philosophy of Biology. Vol. 77, Analysis (United Kingdom). 2017.AustinCJThe Philosophy of Biology77Analysis (United Kingdom)2017Search in Google Scholar
Rashid DJ, Chapman SC, Larsson HC, Organ CL, Bebin A-G, Merzdorf CS, et al. From dinosaurs to birds: a tail of evolution. Evodevo. 2014;5(1):25.RashidDJChapmanSCLarssonHCOrganCLBebinA-GMerzdorfCSFrom dinosaurs to birds: a tail of evolutionEvodevo20145125Search in Google Scholar
Linz DM, Moczek AP. Integrating evolutionarily novel horns within the deeply conserved insect head. BMC Biol. 2020;18(1):41.LinzDMMoczekAPIntegrating evolutionarily novel horns within the deeply conserved insect headBMC Biol202018141Search in Google Scholar
Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and Morphological Variation of Beaks in Darwin’s Finches. Science. 2004;305(5689):1462–5.AbzhanovAProtasMGrantBRGrantPRTabinCJBmp4 and Morphological Variation of Beaks in Darwin’s FinchesScience2004305568914625Search in Google Scholar
Turing AM. The Chemical Basis of Morphogenesis. Philos Trans R Soc L. 1952;237(641):37–72.TuringAMThe Chemical Basis of MorphogenesisPhilos Trans R Soc L19522376413772Search in Google Scholar
Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972;12(1):30–9.GiererAMeinhardtHA theory of biological pattern formationKybernetik1972121309Search in Google Scholar
Meinhardt H, Gierer A. Pattern formation by local self-activation and lateral inhibition. BioEssays. 2000;22:753–60.MeinhardtHGiererAPattern formation by local self-activation and lateral inhibitionBioEssays20002275360Search in Google Scholar
Lange A, Nemeschkal HL, Müller GB. Biased polyphenism in polydactylous cats carrying a single point mutation: the Hemingway model for digit novelty. Evol Biol. 2014;41:262–75.LangeANemeschkalHLMüllerGBBiased polyphenism in polydactylous cats carrying a single point mutation: the Hemingway model for digit noveltyEvol Biol20144126275Search in Google Scholar
Fankhauser G. Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape. J Exp Zool. 1945;100(3):445–455.FankhauserGMaintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shapeJ Exp Zool19451003445455Search in Google Scholar
Kirschner M, Gerhart J, Mitchison T. Molecular “vitalism”. Cell. 2000;100(1):79–88.KirschnerMGerhartJMitchisonTMolecular “vitalism”Cell200010017988Search in Google Scholar
Layer PG, Robitzki A, Rothermel A, Willbold E. Of layers and spheres: The reaggregate approach in tissue engineering. Trends Neurosci. 2002;25(3):131–4..LayerPGRobitzkiARothermelAWillboldEOf layers and spheres: The reaggregate approach in tissue engineeringTrends Neurosci20022531314Search in Google Scholar
Koo B, Choi B, Park H, Yoon KJ. Past, Present, and Future of Brain Organoid Technology. Mol Cells. 2019;42(9):617–27.KooBChoiBParkHYoonKJPast, Present, and Future of Brain Organoid TechnologyMol Cells201942961727Search in Google Scholar
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology. 2020;21(10):571–584.KimJKooBKKnoblichJAHuman organoids: model systems for human biology and medicineNature Reviews Molecular Cell Biology20202110571584Search in Google Scholar
Layer PG, Willbold E. Regeneration of the avian retina by retinospheroid technology. Prog Retin Eye Res. 1994;13(1):197–230.LayerPGWillboldERegeneration of the avian retina by retinospheroid technologyProg Retin Eye Res1994131197230Search in Google Scholar
Vollmer G, Layer PG, Gierer A. Reaggregation of embryonic chick retina cells: Pigment epithelial cells induce a high order of stratification. Neurosci Lett. 1984;48(2):191–6.VollmerGLayerPGGiererAReaggregation of embryonic chick retina cells: Pigment epithelial cells induce a high order of stratificationNeurosci Lett19844821916Search in Google Scholar
Layer PG. Brains emerging: On modularity and self-organisation of neural development in vivo and in vitro. In: Wegner LH, Lüttge U, editors. Emergence and Modularity in Life Sciences. Springer, 2019. p.145–170.LayerPGBrains emerging: On modularity and self-organisation of neural development in vivo and in vitroIn:WegnerLHLüttgeUeditors.Emergence and Modularity in Life SciencesSpringer2019145170Search in Google Scholar
Austin CJ, Nuno de la Rosa L. No Title. In: Nuno de la Rosa L, Müller G, editors. Dispositional Properties in Evo-Devo in: Evolutionary Developmental Biology: A Reference Guide. Springer; 2018.AustinCJNuno de la RosaLNo Title. In:Nuno de la RosaLMüllerGeditors.Dispositional Properties in Evo-Devo in: Evolutionary Developmental Biology: A Reference GuideSpringer2018Search in Google Scholar
Dupré J, Nicholson DJ. A Manifesto for a Processual Philosophy of Biology. In: Everything flows. Oxford University Press; 2018. p. 3–45.DupréJNicholsonDJA Manifesto for a Processual Philosophy of BiologyIn:Everything flowsOxford University Press2018345Search in Google Scholar
Schmidt JC. Das Andere der Natur. Hirzel-Verlag; 2015.SchmidtJCDas Andere der NaturHirzel-Verlag2015Search in Google Scholar
Wegner LH, Lüttge U. Emergence and Modularity in Life Sciences. Springer-Verlag; 2019.WegnerLHLüttgeUEmergence and Modularity in Life SciencesSpringer-Verlag2019Search in Google Scholar
Hao Z, Liu J, Wu B, Yu M, Wegner LH. Strong Emergence in Biological Systems: Is It Open to Mathematical Reasoning? Acta Biotheor. 2021;69(4):841–56.HaoZLiuJWuBYuMWegnerLHStrong Emergence in Biological Systems: Is It Open to Mathematical Reasoning?Acta Biotheor202169484156Search in Google Scholar
Kirschner M, Gerhart J, Mitchison T. Molecular “Vitalism”. Cell. 2000;100(1):79–88.KirschnerMGerhartJMitchisonTMolecular “Vitalism”Cell200010017988Search in Google Scholar
Thorisson GA, Muilu J, Brookes AJ. Genotype-phenotype databases: Challenges and solutions for the post-genomic era. Nature Reviews Genetics. 2009;10(1):9–18.ThorissonGAMuiluJBrookesAJGenotype-phenotype databases: Challenges and solutions for the post-genomic eraNature Reviews Genetics2009101918Search in Google Scholar
Steele EJ, Al-Mufti S, Augustyn KA, Chandrajith R, Coghlan JP, Coulson SG, et al. Cause of Cambrian Explosion - Terrestrial or Cosmic? Prog Biophys Mol Biol. 2018;136:3–23.SteeleEJAl-MuftiSAugustynKAChandrajithRCoghlanJPCoulsonSGCause of Cambrian Explosion - Terrestrial or Cosmic?Prog Biophys Mol Biol.2018136323Search in Google Scholar
Bangert K. Und sie dreht sich doch! 50 Antworten auf die Frage, wie alles begann. Darmstadt, Germany: Theiss, WBG Darmstadt; 2015.BangertKUnd sie dreht sich doch! 50 Antworten auf die Frage, wie alles begannDarmstadt, GermanyTheiss, WBG Darmstadt;2015Search in Google Scholar
Layer PG. “Life” shaped by genes that depend on their surrounds. In: Wissemann V, Bereiter-Hahn J, Gutmann M, editors. Ann History Philosophy Biol. Göttingen: Universitätsverlag Göttingen; 2011. p. 153–70.LayerPG“Life” shaped by genes that depend on their surroundsIn:WissemannVBereiter-HahnJGutmannMeditors.Ann History Philosophy Biol.GöttingenUniversitätsverlag Göttingen201115370Search in Google Scholar
Bachmann G, Frohns F, Thangaraj G, Bausch A, Layer PG. IPL sublamination in chicken retinal spheroids is initiated via Müller cells and cholinergic differentiation, and is disrupted by NMDA signaling. Investig Ophthalmol Vis Sci. 2019;60(14 doi: 10.1167/iovs.18-24952):4759–73.BachmannGFrohnsFThangarajGBauschALayerPGIPL sublamination in chicken retinal spheroids is initiated via Müller cells and cholinergic differentiation, and is disrupted by NMDA signalingInvestig Ophthalmol Vis Sci2019601410.1167/iovs.18-24952475973Open DOISearch in Google Scholar
Bytyqi AH, Bachmann G, Rieke M, Paraoanu LE, Layer PG. Cell-by-cell reconstruction in reaggregates from neonatal gerbil retina begins from the inner retina and is promoted by retinal pigmented epithelium. Eur J Neurosci. 2007;26(6): 1560–74.BytyqiAHBachmannGRiekeMParaoanuLELayerPGCell-by-cell reconstruction in reaggregates from neonatal gerbil retina begins from the inner retina and is promoted by retinal pigmented epitheliumEur J Neurosci2007266156074Search in Google Scholar
Rieke M, Bytyqi A, Frohns F, Layer PG. Reconstructing Mammalian Retinal Tissue: Wnt3a Regulates Laminar Polarity in Retinal Spheroids from Neonatal Mongolian Rats, while RPE Promotes Cell Differentiation. Int J Stem cell Res Ther. 2018;5(1):1–11.RiekeMBytyqiAFrohnsFLayerPGReconstructing Mammalian Retinal Tissue: Wnt3a Regulates Laminar Polarity in Retinal Spheroids from Neonatal Mongolian Rats, while RPE Promotes Cell DifferentiationInt J Stem cell Res Ther201851111Search in Google Scholar