This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Ahmadi, A., Sheikholeslami-Vatani, D., Ghaeeni, S., Baazm, M. (2021). The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles. Molecular Biology Reports, 48, 2153–2161. https://doi.org/10.1007/s11033-021-06224-0Search in Google Scholar
Bailey, D. P., Smith, L. R., Chrismas, B. C., Taylor, L., Stensel, D. J., Deighton, K., Douglas, J. A., Kerr, C. J. (2015). Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity inter-val exercise, in normoxic and hypoxic conditions. Appetite, 89, 237–245. https://doi.org/10.1016/j.appet.2015.02.019Search in Google Scholar
Balykin, M. V., Gening, T. P., Vinogradov, S. N. (2004). Morphological and functional changes in overweight persons under combined normobaric hypoxia and physical training. Human Physiology, 30, 184–191. https://doi.org/10.1023/B:HUMP.0000021647.73620.06Search in Google Scholar
Belikova, M. V., Kolesnikova, E. E., Serebrovskaya, T. V. (2012). Intermittent hypoxia and experimental Parkinson’s disease. In Xi, L., Serebrovskaya, T. V. (Eds.), Intermittent hypoxia and human diseases (pp. 147–153). Springer, London.Search in Google Scholar
Bernardi, L., Passino, C., Serebrovskaya, Z., Serebrovskaya, T., Appenzeller, O. (2001). Respiratory and cardiovascular adaptations to progressive hypoxia. European Heart Journal, 22, 879–886. https://doi.org/10.1053/euhj.2000.2466Search in Google Scholar
Brinkmann, C., Bloch, W., Brixius, K. (2018). Exercise during short-term exposure to hypoxia or hyperoxia -novel treatment strategies for type 2 diabetic patients? Scandinvian Journal of Medicine & Science in Sports, 28(2), 549–564. https://doi.org/10.1111/sms.12937Search in Google Scholar
Britto, F.A., De Groote, E., Aranda, J., Bullock, L., Nielens, H., Deldicque, L. (2020). Effects of a 30-week combined training program in normoxia and in hypoxia on exercise performance and health-related parameters in obese adolescents: a pilot study. The Journal of Sports Medicine and Physical Fitness, 60(4), 601–609. https://doi.org/10.23736/s0022-4707.20.10190-7Search in Google Scholar
Burtscher, M., Haider, T., Domej, W., Linser, T., Gatterer, H., Faulhaber, M., Pocecco, E., Ehrenburg, I., Tkatchuk, E., Koch, R., Bernardi, L. (2009). Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respiratory Physiology & Neurobiology, 165(1), 97–103. https://doi.org/10.1016/j.resp.2008.10.012Search in Google Scholar
Burtsher, M., Pachinger, O., Ehrenbourg, I., Mitter-bauer, G., Faulhaber, M., Puhringer, R., Thatchouk, E. (2004). Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. International Journal of Cardiology, 96, 247–254. https://doi.org/10.1016/j.ijcard.2003.07.021Search in Google Scholar
Chang, J. C., Lien, C. F., Lee, W. S., Chang, H. R., Hsu, Y. C., Luo, Y. P., Jeng, J. R., Hsieh, J. C., Yang, K. T. (2019). Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca(2+) Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells, 8. https://doi.org/10.3390/cells8060564Search in Google Scholar
Chobanyan-Jurgens, K., Scheibe, R. J., Potthast, A. B., et al. (2019). Influences of hypoxia exercise on whole-body insulin sensitivity and oxidative metabolism in older individuals. The Journal of Clinical Endocrinology & Metabolism, 104(11), 5238–5248. https://doi.org/10.1210/jc.2019-00411Search in Google Scholar
Clanton, T. L. & Klawitter, P. F. (2001). Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. Journal of Applied Physiology, 90, 2476–2487. https://doi.org/10.1152/jappl.2001.90.6.2476Search in Google Scholar
Costa, G. P., Camacho-Cardenosa, A., Brazo-Sayavera, J., Viliod, M. C. L, Camacho-Cardenosa, M., Foresti, Y. F., de Carvalho, C. D., Merellano-Navarro, E., Papoti, M., Trapé, Á. A. (2022). Effectiveness, implementation, and monitoring variables of intermittent hypoxic bicycle training in patients recovered from COVID-19: The AEROBICOVID study. Frontiers in Physiology, 2(13), 977519. https://doi.org/10.3389/fphys.2022.977519Search in Google Scholar
Czuba, M., Bril, G., Płoszczyca, K., Piotrowicz, Z., Chalimoniuk, M., Roczniok, R., Zembroń-Łacny, A., Gerasimuk, D., Langfort, J. (2019). Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BioMed Research International, 25(2019), 1287506. https://doi.org/10.1155/2019/1287506Search in Google Scholar
Czuba, M., et al. (2018). Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biology of Sport, 35(1), 39–48. https://doi.org/10.5114/biolsport.2018.70750Search in Google Scholar
Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Medicine & Science in Sports, 10, 175–183.Search in Google Scholar
Czuba, M., Wilk, R., Karpiński, J., Chalimoniuk, M., Zajac, A., Langfort, J. (2017). Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One, 12(8), e0180380. https://doi.org/10.1371/journal.pone.0180380Search in Google Scholar
Czuba, M., Zając, A., Maszczyk, A., Roczniok, R., Poprzęcki, S., Garbaciak, W., Zając, T. (2013). The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. Journal of Human Kinetics, 31(39), 103–14. https://doi.org/10.2478/hukin-2013-0073Search in Google Scholar
De Groote, E., & Deldicque, L. (2021). Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes, Metabolic Syndrome and Obesity, 11(14), 3603–3616. https://doi.org/10.2147/DMSO.S322249Search in Google Scholar
Debevec, T., Simpson, E. J., Macdonald, I. A., Eiken, O., Mekjavić, I. B. (2014). Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation. PLoS ONE, 9, e98874. https://doi.org/10.1371/journal.pone.0098874Search in Google Scholar
Della Guardia, L., Shin, A. C. (2024). Obesity-induced tissue alterations resist weight loss: A mechanistic review. Diabetes, Obesity and Metabolism. 26(8), 3045–3057. https://doi.org/10.1111/dom.15637Search in Google Scholar
Dufour, S. P, Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., Lampert, E., Flück, M., Hoppeler, H., Billat, V., Mettauer, B., Richard, R., Lonsdorfer, J. (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvements in aerobic performance capacity. Journal of Applied Physiology, 100, 1238–1248. https://doi.org/10.1152/japplphysiol.00742.2005Search in Google Scholar
Ezzati, M., Horwitz, M. E., Thomas, D. S., Friedman, A. B., Roach, R., Clark, T. (2011). Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. Journal of Epidemiology and Community Health, 66. https://doi.org/10.1136/jech.2010.112938Search in Google Scholar
Fuller, N. R., Courtney, R. (2016). A case of remission from pre-diabetes following intermittent hypoxic training, Obesity Research & Clinical Practice, 10(4), 487–491. https://doi.org/10.1016/j.orcp.2016.05.008.Search in Google Scholar
Garrido-Sa´nchez, L., Garcı´a-Fuentes, E., Ferna´ndez-Garcı´a, D., Escote´, X., Alcaide, J., et al. (2012) Zinc-Alpha 2-Glycoprotein Gene Expression in Adipose Tissue Is Related with Insulin Resistance and Lipolytic Genes in Morbidly Obese Patients. PLoS ONE, 7(3): e33264. https://doi.org/10.1371/journal.pone.0033264Search in Google Scholar
Gilde, A. J., Van Bilsen, M. (2003). Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle. Acta Physiologica Scandinavica, 178, 425–434. https://doi.org/10.1046/j.1365-201X.2003.01161.xSearch in Google Scholar
Girard, O., Brocherie, F., Millet, G. P. (2017). Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Medicine, 47(10), 1931–1949. https://doi.org/10.1007/s40279-017-0733-zSearch in Google Scholar
Gonzalez-Rothi, E. J., Lee, K. Z., Dale, E. A., Reier, P. J., Mitchell, G. S., Fuller, D. D. (2015). Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 119, 1455–1465. https://doi.org/10.1152/japplphysiol.00235.2015Search in Google Scholar
Griffiths, A., Deighton, K., Shannon, O. M., Boos, C., Rowe, J., Matu, J., King, R., O’Hara, J. P. (2020). Appetite and energy intake responses to breakfast consumption and carbohydrate supplementation in hypoxia. Appetite, 1(147), 104564. https://doi.org/10.1016/j.appet.2019.104564Search in Google Scholar
Guner, I., Uzun, D. D., Yaman, M. O., Genc, H., Gelisgen, R., Korkmaz, G. G., Hallac, M., Yelmen, N., Sahin, G., Karter, Y., Simsek, G. (2013). The effect of chronic long-term intermittent hypobaric hypoxia on bone mineral density in rats: role of nitric oxide. Biological Trace Element Research, 154, 262–267. https://doi.org/10.1007/s12011-013-9722-8Search in Google Scholar
Haider, T., Casucci, G., Linser, T., Faulhaber, M., Gatterer, H., Ott, G., Linser, A., Ehrenbourg, I., Tkatchouk, E., Burtscher, M., Bernardi, L. (2009). Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. Journal of Hypertension, 27, 1648–1654. https://doi.org/10.1097/hjh.0b013e32832c0018Search in Google Scholar
Harrison, C. C., Fleming, J. M., Giles, L. C. (2002). Does interval hypoxic training affect the lung function of asthmatic athletes. New Zeal. J. Sport. Med., 30, 64–67.Search in Google Scholar
Haufe, S., Wiesner, S., Engeli, S., Luft, F. C., Jordan, J. (2008). Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Medicine & Science in Sports & Exercise, 40, 1939–1944. https://doi.org/10.1249/mss.0b013e31817f1988Search in Google Scholar
Hochachka, P. W. (1998). Mechanism and Evolution of Hypoxia-Tolerance in Humans. Journal of Experimental Biology, 201(8), 1243–1254. https://doi.org/10.1242/jeb.201.8.1243Search in Google Scholar
Hoppeler, H., Klossner, S., Vogt, M. (2008). Training in hypoxia and its effects on skeletal muscle tissue. Scandinavian Journal of Medicine & Science in Sports, 18(1), 38–49. https://doi.org/10.1111/j.1600-0838.2008.00831.xSearch in Google Scholar
Howells, D. W., Porritt, M. J., Wong, J. Y., Batchelor, P. E., Kalnins, R., Hughes, A. J., Donnan, G. A. (2000). Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Experimental Neurology, 166(1), 127–35. https://doi.org/10.1006/exnr.2000.7483Search in Google Scholar
Jung, W. S., Kim, S. W., Kim, J. W., Park, H. Y. (2021). Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel), 11(2), 106. https://doi.org/10.3390/life11020106Search in Google Scholar
Kayser, B., Verges, S. (2013). Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Etiology and Patho-physiology/Obesity Treatment, 14(7), 579–92. https://doi.org/10.1111/obr.12034Search in Google Scholar
Kim, S. W., Jung, W. S., Chung, S., Park, H. Y. (2021). Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World Journal of Diabetes, 12(4), 331-343. https://doi.org/10.4239/wjd.v12.i4.331Search in Google Scholar
Kolář, F., & Oštádal, B. (2004). Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiological Research, 53, 3-13.Search in Google Scholar
Kon, Michihiro, et al. (2014). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiological reports, 2(6), e12033. https://doi.org/10.14814/phy2.12033Search in Google Scholar
Levine, B. D., Stray-Gundersen, J. (1992). A practical approach to altitude training: where to live and train for optimal performance enhancement. International Journal of Sports Medicine, 1, S209-12. https://doi.org/10.1055/s-2007-1024642Search in Google Scholar
Levine, B. D., Stray-Gundersen, J. (1997). “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 83(1), 102–12. https://doi.org/10.1152/jappl.1997.83.1.102Search in Google Scholar
Lizamore, C. A., & Hamlin, M. J. (2017) The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Altitude Medicine & Biology, 18, 305–321. https://doi.org/10.1089/ham.2017.0050Search in Google Scholar
Lizamore, C. A., Kathiravel, Y., Elliott, J., Hellemans, J., Hamlin, M. J. (2016). The effect of short-term intermittent hypoxic exposure on heart rate variability in a sedentary population. Acta Physiologica Hungarica, 103, 75–85. https://doi.org/10.1556/036.103.2016.1.7Search in Google Scholar
Lyamina, N. P., Lyamina, S. V., Skorobogatyth, N. V., Ksenofontova, I. V., Spirina, G. K. (2023). Controlled hypoxia-hyperoxytherapy as a component of a targeted approach in the rehabilitation of patients with multimorbidity: a single-center, randomized, placebo-controlled, prospective study. Physical and rehabilitation medicine, medical rehabilitation, 5(4), 279–288. https://doi.org/10.36425/rehab608182Search in Google Scholar
Mackenzie, R., Maxwell, N., Castle, P., Brickley, G., Watt, P. (2011). Acute hypoxia and exercise improve insulin sensitivity (S(I) (2*)) in individuals with type 2 diabetes. Diabetes/Metabolism Research and Reviews, 27(1), 94–101. https://doi.org/10.1002/dmrr.1156Search in Google Scholar
Mackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., Watt, P. (2012). Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 97(4), E546–E555. https://doi.org/10.1210/jc.2011-2829Search in Google Scholar
Manukhina, E. B., Downey, H. F., Shi, X., Mallet, R. T. (2016). Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Experimental Biology and Medicine, 241, 1351–1363. https://doi.org/10.1177/1535370216649060Search in Google Scholar
Manukhina, E. B., Goryacheva, A. V., Pshennikova, M. G., Malyshev, I. Y., Mallet, R. T., Downey, H. F., 2012. Protective effects of adaptation to hypoxia in experimental Alzheimer’s disease. IN Xi L., Serebrovskaya T.V. (Eds) Intermittent hypoxia and human diseases. (pp 155–171). Springer, London.Search in Google Scholar
Martínez-Guardado, I., Ramos-Campo, D. J., Olcina, G. J., Rubio-Arias, J. A., Chung, L. H., Marín-Cascales, E., Alcaraz, P. E., Timón, R. (2019). Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. The European Journal of Sport Science, 19(7), 941–951. https://doi.org/10.1080/17461391.2018.1564796Search in Google Scholar
Matu, J, Deighton, K., Ispoglou, T., Duckworth, L. (2017). The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men. Appetite, 113, 284–292. https://doi.org/10.1016/j.appet.2017.02.041Search in Google Scholar
Matu, J., O’Hara, J., Hill, N., Clarke, S., Boos, C., Newman, C., Holdsworth, D., Ispoglou, T., Duckworth, L., Woods, D., Mellor, A., Deighton, K. (2017). Changes in appetite, energy intake, body composition, and circulating ghrelin constituents during an incremental trekking ascent to high altitude. European Journal of Applied Physiology, 117, 1917–1928. https://doi.org/10.1007/s00421-017-3683-0Search in Google Scholar
Millet, G. P., Debevec, T., Brocherie, F., Malatesta, D., Girard, O. (2016). Therapeutic use of exercising in hypoxia: promises and limitations. Frontiers in Physiology, 7. https://doi.org/10.3389/fphys.2016.00224Search in Google Scholar
Millet, G. P., Jornet, K. (2019). On Top to the Top-Acclimatization Strategy for the “Fastest Known Time” to Mount Everest. International Journal of Sports Physiology and Performance, 14(10), 1438–1441. https://doi.org/10.1123/ijspp.2018-0931Search in Google Scholar
Millet, G. P., Roles, B., Schmitt, L., Woorons, X., Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Medicine, 40(1), 1–25. https://doi.org/10.2165/11317920-000000000-00000Search in Google Scholar
Morishima, T., & Goto, K. (2016). Ghrelin, GLP-1, and leptin responses during exposure to moderate hypoxia. Applied Physiology, Nutrition, and Metabolism, 41(4), 375–81. https://doi.org/10.1139/apnm-2015-0311Search in Google Scholar
Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., Uchida, A. (2010). Hypoxia increases muscle hypertrophy induced by resistance training. International Journal of Sports Physiology and Performance, 5, 497–508. https://doi.org/10.1123/ijspp.5.4.497Search in Google Scholar
Nishiwaki, M., Kawakami, R., Saito, K., Tamaki, H., Takekura, H., Ogita, F. (2011). Vascular adaptations to hypobaric hypoxic training in postmenopausal women. The Journal of Physiological Sciences, 61, 83–91. https://doi.org/10.1007/s12576-010-0126-7Search in Google Scholar
O’Donnell, C. P. (2007). Metabolic Consequences Of Intermittent Hypoxia. In Roach R. C., Wagner P. D., Hackett P. H. (Eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, 618 (pp 41-49). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_4Search in Google Scholar
Ogh, S., Tsukamoto, H., Hirasawa, A., Hasegawa, H., Hirose, N., Hashimoto, T. (2014). The E ect of Changes in Cerebral Blood Flow on Cognitive Function during Exercise. Physiological Reports, 2, e12163. https://doi.org/10.14814/phy2.12163Search in Google Scholar
Palmer, R. M., Ferrige, A. G., Moncada, S. (1987). Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor. Nature, 327, 524–526. https://doi.org/10.1038/327524a0Search in Google Scholar
Park, H. Y., Jung, W. S., Kim, J., Lim, K. (2019). Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: A randomized controlled trial. Geriatrics & Gerontology International, 19(4), 311–316. https://doi.org/10.1111/ggi.13625Search in Google Scholar
Park, H. Y., & Lim, K. (2017) The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. International Journal of Sports Science, 1, 1–5.Search in Google Scholar
Park, H., Poo, M. M. (2013). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14, 7–23. https://doi.org/10.1038/nrn3379Search in Google Scholar
Park, H.-Y., Kim, J., Park, M.-Y., Chung, N., Hwang, H., Nam, S.-S., Lim, K. (2018). Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. Journal of Obesity and Metabolic Syndrome, 27, 93–101. https://doi.org/10.7570/jomes.2018.27.2.93Search in Google Scholar
Park, H.-Y., & Lim, K. (2017). Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. Journal of Sports Science and Medicine, 16, 480–488.Search in Google Scholar
Piotrowicz, Z., Chalimoniuk, M., Płoszczyca, K., Czuba, M., Langfort, J. (2019). Acute normobaric hypoxia does not affect the simultaneous exerciseinduced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS ONE, 14(10): e0224207. https://doi.org/10.1371/journal.%20pone.0224207Search in Google Scholar
Piotrowicz, Z., Chalimoniuk, M., Płoszczyca, K., Czuba, M., Langfort, J. (2020). Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int. J. Mol. Sci, 21, 5569. https://doi.org/10.3390/ijms21155569Search in Google Scholar
Płoszczyca, K., Czuba, M., Langfort, J., Baranowski, M. (2021). Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients, 13, 3481. https://doi.org/10.3390/nu13103481Search in Google Scholar
Płoszczyca, K., Langfort, J., Czuba, M. (2018). The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Frontiers in Physiology, 11(9), 375. https://doi.org/10.3389/fphys.2018.00375Search in Google Scholar
Raberin, A., Burtscher, J., Burtscher, M., Millet, G. P. (2023). Hypoxia and the Aging Cardiovascular System. Aging and disease, 14(6), 2051-2070. https://doi.org/10.14336/AD.2023.0424Search in Google Scholar
Rodway, G. W., Sethi, J. M., Hoffman, L. A., Conley, Y. P., Choi, A. M., Sereika, S. M., Zullo, T. G., Ryter, S. W., Sanders, M. H. (2007). Hemodynamic and molecular response to intermittent hypoxia (IH) versus continuous hypoxia (CH) in normal humans. Translational Research, 149(2), 76-84. https://doi.org/10.1016/j.trsl.2006.09.005Search in Google Scholar
Rybnikova, E. A., Nalivaeva, N. N., Zenko, M. Y., Baranova, K. A. (2022). Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Frontiers in Neuroscience, 21(16), 941740. https://doi.org/10.3389/fnins.2022.941740Search in Google Scholar
Ryou, M. G., Chen, X., Cai, M., Wang, H., Jung, M. E., Metzger, D. B., Mallet, R. T., Shi, X. (2021). Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer’s Disease: A Pilot Study. Frontiers in Aging Neuroscience, 1(13), 674688. https://doi.org/10.3389/fnagi.2021.674688Search in Google Scholar
Schega, L., Peter, B., Brigadski, T., Leßmann, V., Iser-mann, B., Hamacher, D., Törpel, A. (2016). Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. Journal of Science and Medicine in Sport, 19(11), 941–945. https://doi.org/10.1016/j.jsams.2016.02.012Search in Google Scholar
Serebrovskaia, T. V., Mankovskaia, I. N., Lysenko, G. I., Swanson, R., Belinskaia, I. V., Oberenko, O. A., Daniliuk, S. V. (1998). A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Likars’ka sprava, 6, 104–108.Search in Google Scholar
Serebrovskaya, T. V., Manukhina, E. B., Smith, M. L., Downey, H. F., Mallet, R. T. (2008). Intermittent hypoxia: cause of ortherapy for systemic hypertension? Experimental Biology and Medicine, 233, 627–650. https://doi.org/10.3181/0710-MR-267Search in Google Scholar
Shatilo, V. B., Korkushko, O. V., Ischuk, V. A., Downey, H. F., Serebrovskaya, T. V. (2008). Effects of intermittent hypoxic training on exercise performance, haemodynamics, and ventilation in healthy senior men. High Altitude Medicine & Biology, 9, 43–52. https://doi.org/10.1089/ham.2007.1053Search in Google Scholar
Snyder, E. M., Carr, R. D., Deacon, C. F., Johnson, B. D. (2008). Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Applied Physiology, Nutrition, and Metabolism, 33(5), 929–935. https://doi.org/10.1139/H08-079Search in Google Scholar
Soo, J., Raman, A., Lawler, N. G., Goods, P. S. R., Deldicque, L., Girard, O., Fairchild, T. J. (2023). The role of exercise and hypoxia on glucose transport and regulation. European Journal of Applied Physiology, 123(6), 1147–1165. https://doi.org/10.1007/s00421-023-05135-1Search in Google Scholar
Stray-Gundersen, J., & Levine, B. (2008). Live high, train low at natural altitude. Scandinavian journal of medicine & science in sports, 18(1), 21–8. https://doi.org/10.1111/j.1600-0838.2008.00829.xSearch in Google Scholar
Swenson, E. R. (2020). Sympathetic Nervous System Activation and Vascular Endothelial Function With Chronic Hypoxia. Circulation Research, 127(2), 247–248. https://doi.org/10.1161/CIRCRESAHA.120.317114Search in Google Scholar
Thayer, J. F., Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74, 224–242. https://doi.org/10.1016/j.biopsycho.2005.11.013Search in Google Scholar
Urdampilleta, A., González-Muniesa, P., Portillo, M. P., Martínez, J. A. (2012). Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. Journal of Physiology and Biochemistry, 68, 289–304. https://doi.org/10.1007/s13105-011-0115-1Search in Google Scholar
Vogtel, M., & Michels, A. (2010). Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Current Opinion in Allergy and Clinical Immunology, 10(3), 206–213. https://doi.org/10.1097/aci.0b013e32833903a6Search in Google Scholar
Voss, J. D., Allison, D. B., Webber, B. J., Otto, J. L., Clark, L. L. (2014). Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS ONE, 9, e93493. https://doi.org/10.1371/journal.pone.0093493Search in Google Scholar
Wang, J. S., Chen, L. Y., Fu, L. L., Chen, M. L., Wong, M. K. (2007). Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. European Journal of Applied Physiology, 100(2), 127–35. https://doi.org/10.1007/s00421-007-0409-8Search in Google Scholar
Wang, Y., Wen, L., Zhou, S., Zhang, Y., Wang, X. H., He, Y. Y., Davie, A., Broadbent, S. (2018). Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One, 13(9), e0203551. https://doi.org/10.1371/journal.pone.0203551Search in Google Scholar
Wasse, L. K., Sunderland, C., King, J.A., Batterham, R.L., Stensel, D. J. (2012). Influence of rest and exercise at a simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and peptide YY. Journal of Applied Physiology, 112(4), 552-9. https://doi.org/10.1152/japplphysiol.00090.2011Search in Google Scholar
Weil, B. R., Stauffer, B. L., Mestek, M. L., DeSouza, C. A. (2011). Influence of abdominal obesity on vascular endothelial function in overweight/obese adult men. Obesity (Silver Spring), 19, 1742–1746. https://doi.org/10.1038/oby.2011.189Search in Google Scholar
Wiesner S., Haufe S., Engeli S., Mutschler H., Haas U., Luft F. C., et al. (2010). Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring), 18, 116–120. https://doi.org/10.1038/oby.2009.193Search in Google Scholar
Wilber, R. L. (2007) Application of altitude/hypoxic training by elite athletes. Medicine & Science in Sports & Exercise, 39(9), 1610–1624. https://doi.org/10.1249/mss.0b013e3180de49e6Search in Google Scholar
Wiśniewska, A., Płoszczyca, K., Czuba, M. (2020). Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. The Journal of Sports Medicine and Physical Fitness, 60. https://doi.org/10.23736/s0022-4707.20.10404-3Search in Google Scholar
Yamada, K., & Nabeshima, T. (2003). Brain-derived neurotrophic factor/TrkB signaling in memory processes. Journal of Pharmacological Sciences, 91, 267–270. https://doi.org/10.1254/jphs.91.267Search in Google Scholar
Yang, J. L., Lin, Y. T., Chuang, P. C., Bohr, V. A., Mattson, M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Medicine, 16, 161–174. https://doi.org/10.1007/s12017-013-8270-xSearch in Google Scholar
Yingzhong, Y., Droma, Y., Rili, G., Kubo, K. (2006). Regulation of body weight by leptin, with special reference to hypoxia-induced regulation. Internal Medicine, 45, 941–946. https://doi.org/10.2169/internalmedicine.45.1733Search in Google Scholar
Zembron-Lacny, A., Tylutka, A., Wacka, E., Wawrzyniak-Gramacka, E., Hiczkiewicz, D., Kasperska, A., Czuba, M. (2020). Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Research International, 2020, Article ID 6479630. https://doi.org/10.1155/2020/6479630Search in Google Scholar
Zhao, M. L., Lu, Z. J., Yang, L., Ding, S., Gao, F., Liu, Y. Z., Yang, X. L., Li, X., He, S.Y. (2024). The cardiovascular system at high altitude: A bibliometric and visualization analysis. World Journal of Cardiology, 16(4), 199–214. https://doi.org/10.4330/wjc.v16.i4.199Search in Google Scholar
Zhong, H., Belardinelli, L., Maa, T., Zeng, D. (2005). Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 20(32), 2–8. https://doi.org/10.1165/rcmb.2004-0103OCSearch in Google Scholar
Zoll, J., Ponsot, E., Dufour, S., Doutreleau, S., Ventura-Clapier, R., Vogt, M., Hoppeler, H., Richard, R. and Fluck, M. (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts Journal of Applied Physiology, 100, 1258–1266. https://doi.org/10.1152/japplphysiol.00359.2005Search in Google Scholar