Uneingeschränkter Zugang

On characterizing potential friends of 20

,  und   
12. Sept. 2025

Zitieren
COVER HERUNTERLADEN

J. Barkley Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. Search in Google Scholar

T. Chatterjee, S. Mandal, S. Mandal, A note on necessary conditions for a friend of 10, https://doi.org/10.48550/arXiv.2404.00624 (submitted). Search in Google Scholar

R. Laatsch, Measuring the abundancy of integers, Math. Mag. 59 (1986), 84-92. Search in Google Scholar

S. Mandal, S. Mandal, Upper bounds for the prime divisors of friends of 10, Resonance 30, no. 2 (2025), 263-275. Search in Google Scholar

S. Mandal, Exploring the relationships between the divisors of friends of 10, News Bull. Calcutta Math. Soc. 48, no. 1-3 (2025), 21-32. Search in Google Scholar

S. Mandal, Prime divisors of 10’s friends: a generalization of prior bounds, https://doi.org/10.48550/arXiv.2412.02701 (submitted). Search in Google Scholar

P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comp. 84, no. 295 (2015), 2549-2567. Search in Google Scholar

OEIS Foundation Inc., The Online Encyclopedia of Integer Sequences, Sequence A074902, accessed October 2024, https://oeis.org/A074902. Search in Google Scholar

H. R. Thackeray, Each friend of 10 has at least 10 nonidentical prime factors, Indag. Math. 35, no. 3 (2024), 595-607. Search in Google Scholar

J. Ward, Does Ten have a friend?, Int. J. Math. Comput. Sci. 3 (2008), 153-158. Vol. 61 (2025) On characterizing potential friends of 20 229 Search in Google Scholar

P. A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (2000), 307-310. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Mathematik, Allgemeines