On a new one-parameter generalization of dual-complex Jacobsthal numbers
, und
26. Aug. 2021
Über diesen Artikel
Online veröffentlicht: 26. Aug. 2021
Seitenbereich: 127 - 144
Eingereicht: 21. Dez. 2020
DOI: https://doi.org/10.2478/ausm-2021-0007
Schlüsselwörter
© 2021 Dorota Bród et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In this paper we define dual-complex numbers with generalized Jacobsthal coefficients. We introduce one-parameter generalization of dual-complex Jacobsthal numbers - dual-complex r-Jacobsthal numbers. We investigate some algebraic properties of introduced numbers, among others Binet type formula, Catalan, Cassini, d’Ocagne and Honsberger type identities. Moreover, we present the generating function, summation formula and matrix generator for these numbers. The results are generalization of the properties for the dual-complex Jacobsthal numbers.