Über diesen Artikel
Online veröffentlicht: 02. Feb. 2022
Seitenbereich: 251 - 264
Eingereicht: 04. Okt. 2021
Akzeptiert: 11. Okt. 2021
DOI: https://doi.org/10.2478/ausi-2021-0011
Schlüsselwörter
© 2021 S. Pirzada et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Let R be a commutative ring with unity 1 ≠ 0 and let R× be the set of all unit elements of R. The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and there is an edge between two distinct vertices x and y of R if and only if x − y ∈ R×. In this paper, we determine the Laplacian and signless Laplacian eigenvalues for the unitary Cayley graph of a commutative ring. Also, we compute the Laplacian and signless Laplacian energy of the graph GR and its line graph.