1. bookVolumen 30 (2022): Heft 2 (May 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1844-0835
Erstveröffentlichung
17 May 2013
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A result of instability for two-temperatures Cosserat bodies

Online veröffentlicht: 02 Jun 2022
Volumen & Heft: Volumen 30 (2022) - Heft 2 (May 2022)
Seitenbereich: 179 - 192
Eingereicht: 24 Sep 2021
Akzeptiert: 30 Nov 2021
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1844-0835
Erstveröffentlichung
17 May 2013
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

In our study we consider a generalized thermoelasticity theory based on a heat conduction equation in micropolar bodies. Specifically, the heat conduction depends on two distinct temperatures, the conductive temperature and the thermodynamic temperature. In our analysis, the difference between the two temperatures is clear and is highlighted by the heat supply. After we formulate the mixed initial boundary value problem defined in this context, we prove the uniqueness of a solution corresponding some specific initial data and boundary conditions. Also, if the initial energy is negative or null, we prove that the solutions of the mixed problem are exponentially instable.

MSC 2010

[1] Green, A.E., Lindsay, K.A., 1972, Thermoelasticity, J. Elasticity, 2, 1-710.1007/BF00045689 Search in Google Scholar

[2] Lord, H., Shulman, Y., A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids (ZAMP), 15 (1967), 299-30910.1016/0022-5096(67)90024-5 Search in Google Scholar

[3] Green, A.E., Naghdi, P.M., On undamped heat waves in an elastic solid, J. Thermal Stresses, 15(1992), 253-264.10.1080/01495739208946136 Search in Google Scholar

[4] Green, A.E., Naghdi, P.M., Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.10.1007/BF00044969 Search in Google Scholar

[5] Green, A.E., Naghdi, P.M., A verified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. Royal Soc. London A, 448 (1995), 335-356, 357-377, 378-388.10.1098/rspa.1995.0021 Search in Google Scholar

[6] Quintanilla, R., Moore-Gibson-Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006.10.1016/j.apples.2020.100006 Search in Google Scholar

[7] Abbas, I., Marin, M., Analytical Solutions of a Two-Dimensional Generalized Thermoelastic Di usions Problem Due to Laser Pulse, Iran. J. Sci. Technol. - Trans. Mech. Eng., 42(1), 57-71, 201810.1007/s40997-017-0077-1 Search in Google Scholar

[8] Chen, P.J., Gurtin, M.E., On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627.10.1007/BF01594969 Search in Google Scholar

[9] Chen, P.J., et al., On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112.10.1007/BF01591120 Search in Google Scholar

[10] Youssef, H.M., Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 37 (2006), 383-390.10.1093/imamat/hxh101 Search in Google Scholar

[11] Magana, A., et al., On the stability in phase-lag heat conduction with two temperatures, J. Evol. Eq., 18 (2018), 1697-1712.10.1007/s00028-018-0457-z Search in Google Scholar

[12] Marin, M. et al. On the decay of exponential type for the solutions in a dipolar elastic body, J. Taibah Univ. Sci. 14 (1) (2020), 534-54010.1080/16583655.2020.1751963 Search in Google Scholar

[13] Zhang, L. et al., Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles, Entropy, 22(10), Art. No.1070, 202010.3390/e22101070759714533286839 Search in Google Scholar

[14] Marin, M. et al., C Carstea, A domain of influence in the MooreGibson-Thompson theory of dipolar bodies, J. Taibah Univ. Sci., 14(1), 653-660, 2020.10.1080/16583655.2020.1763664 Search in Google Scholar

[15] Mindlin, R.D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16 (1964), 51-78.10.1007/BF00248490 Search in Google Scholar

[16] Green, A.E., Rivlin, R.S., Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17 (1964), 113-147.10.1007/BF00253051 Search in Google Scholar

[17] Gurtin, M.E., The dynamics of solid-solid phase transitions, Arch. Rat. Mech. Anal., 4 (1994), 305-335. Search in Google Scholar

[18] Fried, E., Gurtin, M.E., Thermomechanics of the interface between a body and its environment, Continuum Mech. Therm., 19(5) (2007), 253-271.10.1007/s00161-007-0053-x Search in Google Scholar

[19] Stanciu, M. et al., Vibration Analysis of a Guitar considered as a Symmetrical Mechanical System, Symmetry, Basel, 11(6)(2019), Art. No. 727. Search in Google Scholar

[20] Marin, M., An evolutionary equation in thermoelasticity of dipolar bodies, J. Math. Phys., 40 (1999), No. 3, 1391-1399. Search in Google Scholar

[21] Marin, M., A domain of influence theorem for microstretch elastic materials, Nonlinear Anal. Real World Appl., 11(5)(2010), 3446-3452.10.1016/j.nonrwa.2009.12.005 Search in Google Scholar

[22] Marin, M. et al., Modeling a microstretch thermo-elastic body with two temperatures, Abstract and Applied Analysis, 2013, Art. No. 583464, 1-7, 201310.1155/2013/583464 Search in Google Scholar

[23] Othman, M.I.A., et al., A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model, Int J Numer Method H, 29(12), 4788-4806, 201910.1108/HFF-04-2019-0359 Search in Google Scholar

[24] Chirila A, et al., On adaptive thermo-electro-elasticity within a Green-Naghdi type II or III theory. Contin. Mech. Thermodyn., 31(5) (2019), 1453-1475.10.1007/s00161-019-00766-2 Search in Google Scholar

[25] Marin, M., A temporally evolutionary equation in elasticity of micropolar bodies with voids, U.P.B. Sci. Bull., Series A-Applied Mathematics Physics, 60(3-4)(1998), 3-12. Search in Google Scholar

[26] Knops, R.J., Wilkes, E.W., Theory of elastic stability, Flugge handbuch der Physik (ed. C. Truesdell), vol. VI a/3, Springer-Verlag, (1973), 125-302.10.1007/978-3-642-69569-8_2 Search in Google Scholar

[27] Knops, R.J., Payne, L.E., Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Ration. Mech. Anal., 41 (1971), 363-398.10.1007/BF00281873 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo