1. bookVolumen 29 (2021): Heft 2 (June 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1844-0835
Erstveröffentlichung
17 May 2013
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A Benchmark Generalization of Fuzzy Soft Ideals in Ordered Semigroups

Online veröffentlicht: 08 Jul 2021
Volumen & Heft: Volumen 29 (2021) - Heft 2 (June 2021)
Seitenbereich: 155 - 171
Eingereicht: 26 Jul 2020
Akzeptiert: 30 Dec 2020
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1844-0835
Erstveröffentlichung
17 May 2013
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

In real life, variability and inaccuracy are always presentand must be calculated by either possibilistic, probabilistic, polymorphic or other uncertainty approach. This benchmark study is about to construct new types of fuzzy soft ideals i.e., (∈, ∈ ∨qk)-FSR(L)Is of ordered semigroup(OSG). Based on this inception, fuzzy soft level subsets are defined which link ordinary ideals with (∈, ∈ ∨qk)-fuzzy soft left(right) ideals. Some binary operations like ◦λ, intersection ∩λ and union of fuzzy soft sets ∪λ are given and various fundamental results of ideal theory are developed through these types of fuzzy soft ideals.

MSC 2010

[1] J. Slingo and T. Palmer, Uncertainty in weather and climate prediction. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 369:4751 - 4767, 2011.10.1098/rsta.2011.0161 Search in Google Scholar

[2] S. J. Fletcher, Data Assimilation for the Geosciences From Theory to Application. Elsevier, 2017.10.1016/B978-0-12-804444-5.00023-4 Search in Google Scholar

[3] F. Bostelmann and G. Strydom. Nuclear data uncertainty and sensitivity analysis of the vhtrc benchmark using scale. Annals of Nuclear Energy, 110, 317 - 329, 2017.10.1016/j.anucene.2017.06.052 Search in Google Scholar

[4] A. Csebfalvi, Structural optimization under uncertainty in loading directions: Benchmark results. Advances in Engineering Software, 120:68-78, 2018. Search in Google Scholar

[5] T. Gernay, R. V. Coile, N. E. Khorasani and D. Hopkin, Efficient uncertainty quantification method applied to structural fire engineering computations. Engineering Structures, 183:1 - 17, 2019.10.1016/j.engstruct.2019.01.002 Search in Google Scholar

[6] H. Zhai and J. Zhang, Equilibrium reliability measure for structural design under twofold uncertainty. Information Sciences, 477:466 - 489, 2019.10.1016/j.ins.2018.10.059 Search in Google Scholar

[7] Y. Zhang, Y. Lu, Y. Zhou and Q. Zhang, Resistance uncertainty and structural reliability of hypar tensioned membrane structures with pvc coated polyesters. Thin-Walled Structures, 124:392 - 401, 2018.10.1016/j.tws.2017.12.026 Search in Google Scholar

[8] M. Guedri, S. Cogan and N. Bouhaddi, Robustness of structural reliability analyses to epistemic uncertainties. Mechanical Systems and Signal Processing, 28:458 - 469, 2012.10.1016/j.ymssp.2011.11.024 Search in Google Scholar

[9] G.Schueller and H.Pradlwarter, Benchmark study on reliability estimation in higher dimensions of structural systems an overview. Structural Safety, 29(3):167-182, 2007.10.1016/j.strusafe.2006.07.010 Search in Google Scholar

[10] M. Huber, Reducing forecast uncertainty by using observations in geotechnical engineering. Probabilistic Engineering Mechanics, 45:212-219, 201610.1016/j.probengmech.2016.02.002 Search in Google Scholar

[11] D.Molodtsov, Soft set theory-first results, Comput. Math. Applic. 37(4), 19-31 (1999).10.1016/S0898-1221(99)00056-5 Search in Google Scholar

[12] F.Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform., 2, 69-80,(2011) Search in Google Scholar

[13] P.K.Maji, A.R.Roy and R.Biswas, An application of soft sets in a decision making problem, Comput. Math. Applic., 44, 1077-1083,(2002).10.1016/S0898-1221(02)00216-X Search in Google Scholar

[14] A.R.Roy and P.K.Maji, A soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics 203,412-418.(2007).10.1016/j.cam.2006.04.008 Search in Google Scholar

[15] N.cagman and S.Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl. 59, 3308-3314.(2010). Search in Google Scholar

[16] N.cagman and S.Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207, 848-855.(2010). Search in Google Scholar

[17] F.Feng, Y.B.Jun, X.Liu and L.Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. 234, 10-20.(2010). Search in Google Scholar

[18] P.K.Maji, A.R.Roy and R.Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44, 1077-1083.(2002). Search in Google Scholar

[19] D.Molodtsov, V.Yu.Leonov and D.V.Kovkov, Soft set technique and its applications, Nechetkie Sistemy i Myagkie Vychisleniya, 1(1), 8-39.(2006). Search in Google Scholar

[20] U.Acar, F.Koyuncu and B.Tanay, Soft sets and soft rings, Comput. Math. Appl., 59, 3458-3463.(2010).10.1016/j.camwa.2010.03.034 Search in Google Scholar

[21] A.Sezgin and A.O.Atagun, On operations of soft sets, Comput. Math. Appl., 61, 1457-1467.(2011).10.1016/j.camwa.2011.01.018 Search in Google Scholar

[22] N.Cagman and S.Enginoglu, FP-soft set theory and its applications, Ann. Fuzzy Math. Inform., 2, 219-226.(2011). Search in Google Scholar

[23] F.Feng, X.Y.Liu, V.Leoreanu-Fotea and Y.B.Jun, Soft sets and soft rough sets, Inform. Sci., 181, 1125-1137.(2011).10.1016/j.ins.2010.11.004 Search in Google Scholar

[24] Z.Xiao, K.Gong, S.Xia and Y.Zou, Exclusive disjunctive soft sets, Comput. Math. Appl., 59, 2128-2137.(2010).10.1016/j.camwa.2009.12.018 Search in Google Scholar

[25] Y.Zou and Z.Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge Based Systems, 21, 941-945.(2008).10.1016/j.knosys.2008.04.004 Search in Google Scholar

[26] A.O.Atagun and A.Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., 61, 592-601.(2011).10.1016/j.camwa.2010.12.005 Search in Google Scholar

[27] F.Feng, Y.B.Jun and X.Zhao, Soft semirings, Comput. Math. Appl. 56, 2621-2628.(2008). Search in Google Scholar

[28] P.Majumdar and S.K.Samanta, Similarity measure of soft sets, New Mathematics and Natural Computation, 4(1), 1-12.(2008).10.1142/S1793005708000908 Search in Google Scholar

[29] Y. B.Jun, Soft BCK/BCI-algebras. Comput. Math. Applic., 56, 1408-1413.(2008).10.1016/j.camwa.2008.02.035 Search in Google Scholar

[30] Y. B.Jun, K.J.Lee and A.Khan, Soft OSGs. Math.Logic Q., 56, 42-50.(2010).10.1002/malq.200810030 Search in Google Scholar

[31] Y. B.Jun, K.J.Lee and C.H.Park, Soft set theory applied to ideals in d-algebras. Comput. Math. Applic., 57, 367-378.(2009). Search in Google Scholar

[32] Y. B.Jun, K.J.Lee and J.Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Applic., 58, 2060-2068.(2009).10.1016/j.camwa.2009.07.072 Search in Google Scholar

[33] Y. B.Jun and C.H.Park, Applications of soft sets in ideal theory.,Inform. Sci., 178, 2466-2475.(2008).10.1016/j.ins.2008.01.017 Search in Google Scholar

[34] J.Zhan and Y. B.Jun, Soft BL-algebras based on fuzzy sets., Comput. Math. Applic., 59, 2037-2046.(2010). Search in Google Scholar

[35] L. A. Zadeh, Fuzzy sets., Inform. Control. 8, 338-353 (1965).10.1016/S0019-9958(65)90241-X Search in Google Scholar

[36] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning., Inform. Sci. 8, 199-249 (1975).10.1016/0020-0255(75)90036-5 Search in Google Scholar

[37] A.Rosenfeld, Fuzzy groups., J. Math. Anal. Appl. 35, 512-517 (1971).10.1016/0022-247X(71)90199-5 Search in Google Scholar

[38] R.Biswas Rosenfelds, fuzzy subgroups with interval-valued membership functions., Fuzzy Sets and Systems volume. 63, 87-90 (1994).10.1016/0165-0114(94)90148-1 Search in Google Scholar

[39] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy. Math. 9(3), 589-602 (2001). Search in Google Scholar

[40] A. Aygunoglu, H. Aygun Introduction to fuzzy soft group Coumpt. Math. Appl. 58, 1279-1286 (2009) Search in Google Scholar

[41] Feng Feng, Young Bae Jun, Xianzhong Zhao Soft semirings, Computers and Mathematics with Applications. 56, 2621-2628 (2008)10.1016/j.camwa.2008.05.011 Search in Google Scholar

[42] Sana. H, F. M. Khan, N. Yufeng, A new concept of possibility fuzzy soft OSGs via its applications, J. Int. Fuzzy Sys. 36, 3685-3696 (2019). Search in Google Scholar

[43] S. K. Bhakat, P. Das (∈, ∈ Vq)-fuzzy subgroups, Fuzzy Sets and Systems. 80, 359-368 (1996). Search in Google Scholar

[44] Y. B. Jun, Generalizations of (∈, ∈ Vq) -fuzzy subalgebras in BCK/BCI- algebras, Comput. Math. Applic. 58(7), 1383-1390 (2009). Search in Google Scholar

[45] M. Shabir, Y. B. Jun, H. Nawaz, Semigroups characterized by (∈,∈ Vqk) -fuzzy ideals, Comput. Math. Applic. 60, 1473-1493 (2010). Search in Google Scholar

[46] F. M. Khan, N. H. Sarmin, A. Khan, Some study of (α, β)-fuzzy ideals in OSGs, Anal. Fuzzy. Math. Inform. 3(2), 213-227 (2012). Search in Google Scholar

[47] Cheng-Fu Yang,Fuzzy soft semigroups and fuzzy soft ideals, Computers and Mathematics with Applications 61 (2011) 255-26110.1016/j.camwa.2010.10.047 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo