Zitieren

[1] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood. On the metric dimension of cartesian products of graphs. SIAM J. Discrete Math., 21(2): 423-441, 2007.10.1137/050641867Search in Google Scholar

[2] G. Chartrand, C. Poisson, P. Zhang. Resolvability and the upper dimension of graphs. Comput. Math. with Appl., 39(12): 19-28, 2000.10.1016/S0898-1221(00)00126-7Search in Google Scholar

[3] K. Chau, S. Gosselin. The metric dimension of circulant graphs and their cartesian products. Opuscula Mathematica, 37(4): 509-534, 2017.10.7494/OpMath.2017.37.4.509Search in Google Scholar

[4] F. Haray, R. A. Melter. On the metric dimension of a graph. Ars Combin., 2(1): 191-195, 1976.Search in Google Scholar

[5] S. Hoffmann, A. Elterman, E. Wanke. A linear time algorithm for metric dimension of cactus block graphs. Theor. Comput. Sci., 630: 43-62, 2016.10.1016/j.tcs.2016.03.024Search in Google Scholar

[6] I. Javaid, M. N. Azhar, M. Salman. Metric dimension and determining number of Cayley graphs. World Appl. Sci. J., 18: 1800-1812, 2012.Search in Google Scholar

[7] I. Javaid, M. T. Rahim, K. Ali. Families of regular graphs with constant metric dimension. Utilitas Math., 75: 21-33, 2008.Search in Google Scholar

[8] I. Javaid, N. K. Raja, M. Salman, M. N. Azhar. The partition dimension circulant graphs. World Appl. Sci. J., 18(12): 1705-1717, 2012.Search in Google Scholar

[9] G. Jager, F. Drewes. The metric dimension of Zn × Zn × Zn is ;⎣3n/2⎦. Theor. Comput. Sci., https://doi.org/10.1016/j.tcs.2019.05.042, 2019.10.1016/j.tcs.2019.05.042Search in Google Scholar

[10] M. Johnson. Structure-activity maps for visualizing the graph variables arising in drug design. Biopharmaceutical Stat., 3(2): 203-236, 1993.10.1080/10543409308835060Search in Google Scholar

[11] A. Kelenc, N. Tratnik, I. G. Yero. Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math., 251: 204-220, 2018.Search in Google Scholar

[12] S. Khuller, B. Raghavachari, A. Rosenfeld. Landmarks in graphs. Discrete Appl. Math., 70(3): 217-229, 1996.10.1016/0166-218X(95)00106-2Search in Google Scholar

[13] J. Kratica, V. Filipovi, A. Kartelj. Edge Metric Dimension of Some Generalized Petersen Graphs. http://arxiv.org/abs/1807.00580v1, 2018.Search in Google Scholar

[14] R. A. Melter and I. Tomescu. Metric bases in digital geometry. Comput. Vision, Graphics, Image Process., 25(1): 113-121, 1984.10.1016/0734-189X(84)90051-3Search in Google Scholar

[15] Z. Mufti, M. Nadeem, A. Ahmad, Z. Ahmad. Computation of edge metric dimension of barcycentric subdivision of Cayley graphs. ffhal-01902772f, 2018.Search in Google Scholar

[16] M. Salman, I. Javid, M.A. Chaudhry. Resolvability in circulant graphs. Acta Math. Sin. Engl. Ser., 28: 1851-1864, 2012.10.1007/s10114-012-0417-4Search in Google Scholar

[17] A. Seb, E. Tannier. On metric generators of graphs. Math. Oper. Res., 29: 383-393, 2004.10.1287/moor.1030.0070Search in Google Scholar

[18] P. J. Slater. Leaves of trees. Congr. Numer., 14(37): 549-559, 1975.Search in Google Scholar

[19] P. J. Slater. Dominating and reference sets in graphs. J. Math. Phys. Sci., 22: 445-455, 1988.Search in Google Scholar

[20] S. Zejnilovic, D. Mitsche, J. Gomes, B. Sinopoli. Extending the metric dimension to graphs with missing edges. Theor. Comput. Sci., 609: 384-394, 2016.10.1016/j.tcs.2015.10.022Search in Google Scholar

[21] N. Zubrilina. On the edge dimension of a graph. Discrete Math., 341(7): 2083-2088, 2018.10.1016/j.disc.2018.04.010Search in Google Scholar

eISSN:
1844-0835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Allgemeines