Uneingeschränkter Zugang

The Variation of the Salt Concentration at the Discharge of a River into a Saline Water


Zitieren

[1] G. Alendal, H. Drange, P.M. Haugan, Modelling of deep-sea gravity currents using an integrated plume model, Geophysical Monograph, 85 (1994), 237 – 246.Search in Google Scholar

[2] J. Beckmann, M. Perrette, A. Ganopolski, Simple models for the simulation of submarine melt for a Greenland glacial system model, The Cryosphere, 12 (2018), 301 – 323.10.5194/tc-12-301-2018Search in Google Scholar

[3] S.Y. Chao, W.C. Boicourt, Onset of estuarine plumes, J. Phys. Oceanogr., 16 (1986), 2137 – 2149.10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2Search in Google Scholar

[4] D.C. Chapman, S.J. Lenz, Trapping of a coastal density front by the bottom boundary layer, J. Phys. Oceanogr., 24 (1994), 1464 – 1479.10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2Search in Google Scholar

[5] P. Chatanantavet, M.P. Lamb, Sediment transport and topographic evolution of a coupled river and river plume system: an experimental and numerical study, J. Geophys. Res. Earth Surf., 119 (2014), 1263 – 1282.10.1002/2013JF002810Search in Google Scholar

[6] B. Deremble, Convective plumes in rotating systems, J. Fluid. Mech., 799 (2016), 27 – 55.10.1017/jfm.2016.348Search in Google Scholar

[7] M.J. Devlin, C. Petus, E. da Silva, D. Tracey, N.H. Wol, J. Waterhouse, J. Brodie, Water quality and river plume monitoring in the great barrier reef: an overview of methods based on ocean colour satellite data, Remote Sens., 7 (2015), 12909 – 12941.10.3390/rs71012909Search in Google Scholar

[8] A. Fabregat, W.K. Dewar, T.M. Ozgokmen, A.C. Poje, N. Wienders, Numerical simulations of turbulent thermal, bubble and hybrid plumes, Ocean Modelling, 90 (2015), 16 – 28.10.1016/j.ocemod.2015.03.007Search in Google Scholar

[9] D.A. Fong, Dynamics of freshwater plumes: observations and numerical modeling of the wind-forced response and alongshore freshwater transport, Ph.D. Thesis, MIT (1998).Search in Google Scholar

[10] D.A. Fong, W.R. Geyer, Response of a river plume during upwelling favorable wind event, J. Geophys. Res., 106 (2001), 1067 – 1084.10.1029/2000JC900134Search in Google Scholar

[11] D.A. Fong, M.T. Stacey, Horizontal dispersion of a near-bed coastal plume, J. Fluid. Mech., 489 (2003), 239 – 267.10.1017/S002211200300510XSearch in Google Scholar

[12] R.W. Garvine, A dynamical system of classifying buoyant coastal discharges, Continental Shelf Research, 15 (1995), 1585 – 1596.10.1016/0278-4343(94)00065-USearch in Google Scholar

[13] D.B. Haidvogel, A.R. Robinson, E.E. Schulman, The accuracy, efficiency, and stability of three numerical models with application to open ocean problems, J. Comput. Phys., 34 (1980), 1 – 53.10.1016/0021-9991(80)90111-4Search in Google Scholar

[14] D.B. Haidvogel, J.L. Wilkin, R. Young, A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates, J. Comput. Phys., 94 (1991), 151 – 185.10.1016/0021-9991(91)90141-7Search in Google Scholar

[15] A.R. Horner Devine, D.A. Fong, S.G. Monismith, T. Maxworthy, Laboratory experiments simulating a coastal river inflow, J. Fluid. Mech., 555 (2006), 203 – 232.10.1017/S0022112006008937Search in Google Scholar

[16] A.R. Horner Devine, The bulge circulation in the Columbia river plume, Cont. Shelf Res., 29 (2009), 234 – 251.10.1016/j.csr.2007.12.012Search in Google Scholar

[17] R.N. Miller, A.R. Robinson, D.B. Haidvogel, A baroclinic quasigeostrophic open ocean model, J. Comput. Phys., 50 (1983), 38 – 70.10.1016/0021-9991(83)90041-4Search in Google Scholar

[18] S. Nakada, S. Kobayashi, M. Hayashi, J. Ishizaka, S. Akiyama, M. Fuchi. M. Nakajima, High-resolution surface salinity maps in coastal oceans based on geostationary ocean color images: quantitative analysis of river plume dynamics, J. Oceanography, 74 (2018), 287 – 304.10.1007/s10872-017-0459-4Search in Google Scholar

[19] D. Nof, On the dynamics of equatorial outflows with application to the amazon basin, J. Marine Res., 39 (1981), 1 – 29.Search in Google Scholar

[20] A.A. Osadchiev, P.O. Zavialov, Lagrangian model of a surface-advected river plume, Cont. Shelf Res., 58 (2013), 96 – 106.10.1016/j.csr.2013.03.010Search in Google Scholar

[21] L.Y. Oey, G.L. Mellor, Subtidal variability of estuarine outflow, plume, and coastal current: a model study, J. Phys. Oceanogr., 23 (1993), 164 – 171.10.1175/1520-0485(1993)023<0164:SVOEOP>2.0.CO;2Search in Google Scholar

[22] A. Poggioli, Hydrodynamics and sediment transport at the river ocean interface: analytical and laboratory investigations, Ph.D. Thesis, University of Washington, 2015.Search in Google Scholar

[23] B.M. Satinsky, B.L. Zielinski, M. Doherty, C.B. Smith, S. Sharma, J.H. Paul, B.C. Crump, M.A. Moran, The Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the Amazon river plume, June 2010, Microbiome, 2 (2014), 17.10.1186/2049-2618-2-17Search in Google Scholar

[24] G. Shanmugam, A global satellite survey of density plumes at river mouths and at other environments: plume configurations, external controls, and implications for deep-water sedimentation, Petrol. Explor. Develop., 45 (2018), 640 – 661.10.1016/S1876-3804(18)30069-7Search in Google Scholar

[25] A.E. Yankovsky, D.C. Chapman, Generation of mesoscale flows over the shelf and slope by shelf wave scattering in the presence of a stable, sheared mean current, J. Geophys. Res., 100 (1995), 6725 – 6742.10.1029/94JC03339Search in Google Scholar

[26] A.E. Yankovsky, D.C. Chapman, A simple theory for the fate of buoyant coastal discharges, J. Phys. Oceanogr., 27 (1997), 1386 – 1401.10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2Search in Google Scholar

[27] A.E. Yankovsky, B.M. Hickey, A.K. Muenchow, Impact of variable inflow on the dynamics of a coastal buoyant plume, J. Geophys. Res., 106 (2001), 19809 – 19824.10.1029/2001JC000792Search in Google Scholar

eISSN:
1844-0835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Allgemeines