Uneingeschränkter Zugang

Influence of 3D-Printing Strategies on the Compressibility of TPU 85A Elastomeric Material

, , , ,  und   
31. Dez. 2024

Zitieren
COVER HERUNTERLADEN

Martinez, R.V., Glavan, A.C., Keplinger, C., Oyetibo, A., & Whitesides, G.M. Soft Actuators and Robots that Are Resistant to Mechanical Damage. Advanced Functional Materials 2014, 24. Search in Google Scholar

Rusu, D.M.; Petrașcu, O.L.; Pascu, A.M.; Mândru, S.D. The Influence of Industrial Environmental Factors on Soft Robot Materials. Materials 2023, 16, 2948. Search in Google Scholar

Rossiter, J.M.; Hauser, H. Soft Robotics—The Next Industrial Revolution? IEEE Robot. Autom. Mag. 2016, 23, 17–20. Search in Google Scholar

Biriș C-M, Racz S-G, Gîrjob C-E, Grovu R-D, Rusu D-M. A Wearable Device for Upper Limb Rehabilitation and Assistance Based on Fluid Actuators and Myoelectric Control. Applied Sciences. 2023; 13(18):10181. https://doi.org/10.3390/app131810181. Search in Google Scholar

Heung KHL, Li H, Wong TWL and Ng SSM (2023) Assistive robotic hand with bi-directional soft actuator for hand impaired patients. Front. Bioeng. Biotechnol. 11:1188996. doi: 10.3389/fbioe.2023.1188996. Search in Google Scholar

Sander C. van den Berg, Rob B.N. Scharff, Zoltán Rusák, Jun Wu, OpenFish: Biomimetic design of a soft robotic fish for high speed locomotion, HardwareX, Volume 12, 2022, e00320, ISSN 2468-0672, https://doi.org/10.1016/j.ohx.2022.e00320. Search in Google Scholar

Runzhi Zhang, Zhong Shen, Hua Zhong, Jiyong Tan, Yong Hu, and Zheng Wang, A Cephalopod-Inspired Soft-Robotic Siphon for Thrust Vectoring and Flow Rate Regulation, Soft Robotics 202, 8:4, 416-431. Search in Google Scholar

Galloway KC, Becker KP, Phillips B, Kirby J, Licht S, Tchernov D, Wood RJ, Gruber DF. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot. 2016 Mar 1;3(1):23-33. doi: 10.1089/soro.2015.0019. PMID: 27625917; PMCID: PMC4997628. Search in Google Scholar

Wu, T., Liu, Z., Ma, Z. et al. Bionic soft robotic gripper with feedback control for adaptive grasping and capturing applications. Front. Mech. Eng. 19, 8 (2024). https://doi.org/10.1007/s11465-023-0779-6. Search in Google Scholar

Phanomchoeng G, Pitchayawetwongsa P, Boonchumanee N, Lin S, Chancharoen R. Grasping Profile Control of a Soft Pneumatic Robotic Gripper for Delicate Gripping. Robotics. 2023; 12(4):107. https://doi.org/10.3390/robotics12040107. Search in Google Scholar

Sun, L., Lan, Y., and Wang, B.: Anthropomorphic modular gripper finger actuated by antagonistic wire and shape-memory alloy (SMA) springs, Mech. Sci., 15, 601–611, https://doi.org/10.5194/ms-15-601-2024,2024. Search in Google Scholar

Petrașcu RM, Racz S-G, Rusu D-M. Mapping Smart Materials’ Literature: An Insight between 1990 and 2022. Sustainability. 2023; 15(20):15143. https://doi.org/10.3390/su152015143. Search in Google Scholar

Gianni Stano, Gianluca Percoco. Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mechanics Letters 2021, Volume 42, 101079, ISSN 2352-4316. Search in Google Scholar

B. W. K. Ang and C. -H. Yeow. Design and Characterization of a 3D Printed Soft Robotic Wrist Sleeve with 2 DoF for Stroke Rehabilitation. 2nd IEEE International Conference on Soft Robotics (RoboSoft) 2019, Seoul, Korea (South), pp. 577-582. Search in Google Scholar

W. Crooks, S. Rozen-Levy, B. Trimmer, C. Rogers, and W. Messner, Passive gripper inspired by Manduca Sexta and the fin ray® effect. Int. J. Adv. Robot. Syst. 2017, vol. 14, no. 4, pp. 1–7. Search in Google Scholar

ISO 604:2002 Plastics — Determination of compressive properties, https://www.iso.org/standard/31261.html, Accessed May 04, 2023. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Automatisierungstechnik, Maschinenbau, Fertigung, Verfahrenstechnik