Uneingeschränkter Zugang

Adsorption Study of Paracetamol with Graphene oxide Synthesized from Agricultural waste


Zitieren

Akhavan, O., Bijanzad, K., and Mirsepah, A. (2014). Synthesis of graphene from natural and Industrial carbonaceous wastes. In RSC Adv., 4, 20441-20448 https://doi.org/10.1039/C4RA01550A10.1039/c4ra01550a Search in Google Scholar

Akpotu, S.O., and Moodley, B. (2018). Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system Journal of Environmental Management 209: 205-215. doi.org/10.1016/j.jenvman.2017.12.037.10.1016/j.jenvman.2017.12.037 Search in Google Scholar

Alam, S.N., Sharma, N., and Kumar, L. (2017). Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene 6: 1-18. http://dx.doi.org/10.4236/graphene.2017.6100110.4236/graphene.2017.61001 Search in Google Scholar

Al-Khateeb, L.A. Almotiry, S., and Salam, M.A. (2014). Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical Engineering Journal 248: 191-199. doi.org/10.1016/j.cej.2014.03.02310.1016/j.cej.2014.03.023 Search in Google Scholar

Amir Faiz, M.S., Azurahanim, C., Yazid, Y., Suriani, A.B., and Ain, S.N. (2020). Preparation and characterization of graphene oxide from tea waste and it’s photocatalytic application of TiO2/graphene nano composite Materials Research Express 7,015613. doi.org/10.1088/2053-1591/ab689df10.1088/2053-1591/ab689d Search in Google Scholar

Aro-modiu, O., Osobamiro, M.T., and Osundeko, A.O. (2019). Synthesis and Characterization of Graphene Oxide from Agricultural Waste Scienta Africana, An International Journal of Pure ---amp--- Applied Sciences 18: 143-151. ISSN 1118-1931. Search in Google Scholar

Barroso, P.J., Santos, J.L., Martín, J., Aparicio, I., and Alonso, E. (2019). Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Critical reviews in environmental science and technology 49:104–171. https://doi.org/10.1080/10643389.2018.154076110.1080/10643389.2018.1540761 Search in Google Scholar

Chen, H., Gao, B., and Li, H. (2015). Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of Hazardous Materials, 282:201–207.DOI: 10.1016/j.jhazmat.2014.03.06310.1016/j.jhazmat.2014.03.06324755346 Search in Google Scholar

Debbarma, J., PeetamMandal, P., and Saha, M. (2020). Chemistry and Mechanism of One-Step Formation of Graphene from Agrowaste Letters in Applied Nano bioscience 9: 1389 – 1394. https://doi.org/10.33263/LIANBS93.1389139410.33263/LIANBS93.13891394 Search in Google Scholar

Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M., and Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 368: 540–546. DOI: 10.1016/j.jcis.2011.11.01510.1016/j.jcis.2011.11.01522138269 Search in Google Scholar

Grace, A.S., and Malar, G.S.P.L. (2020). Synthesis and Characterization of Graphene Oxide from Coconut Husk Ash, Oriental journal of chemistry 36: 348-352. http://dx.doi.org/10.13005/ojc/36022010.13005/ojc/360220 Search in Google Scholar

Catherine, H.N., Ming-Han, O., Basavaraju, M., and Yang-hsin, S. (2018). Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water, Science of The Total Environment, 635: 629-638. 10.1016/j.scitotenv.2018.03.38910.1016/j.scitotenv.2018.03.389 Search in Google Scholar

Homem, V., and. Santos, V. (2011). Degradation and removal methods of antibiotics from aqueous matrices — a review, J. Environ. Manage. 92: 2304−2347. DOI: 10.1016/j.jenvman.2011.05.02310.1016/j.jenvman.2011.05.02321680081 Search in Google Scholar

Ismail, M., Weng, C.N., Rahman, H.A., and Zakaria, N.A. (2013). “Freundlich isotherm equilibrium equastions in determining effectiveness a low-cost absorbent to heavy metal removal in wastewater (leachate) at TelukKitang Landfill, Pengkalan Chepa, Kelantan, Malaysia Journal of Geography and Earth Science, 1: 01-08. Search in Google Scholar

Li, X., Wang, Z., Li, Q., Ma, J. and Zhu, M. (2015). Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption, Chemical Engineering Journal, 273: 630-637. 10.1016/j.cej.2015.03.10410.1016/j.cej.2015.03.104 Search in Google Scholar

Li, Y., Du, Q., Liu, T., Sun, J., Jiao, Y., Xia, Y., Xia, L., Wang, Z., Zhang, W., Wang, K., Zhu, H., and Wu, D. (2012). Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene Materials Research Bulletin, 47:1898–1904. https://doi.org/10.1016/j.materresbull.2012.04.02110.1016/j.materresbull.2012.04.021 Search in Google Scholar

Li, Y., Du, Q., Liu, T., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., and Xia, L. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites, Carbohydrate polymers, 95: 501–507. DOI: 10.1016/j.carbpol.2013.01.09410.1016/j.carbpol.2013.01.09423618299 Search in Google Scholar

Liu, X., Zhang, H., Ma, Y., Wu, X., Meng, L., Guo, Y., Yu, G., and Liu, Y. (2013). Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water, Journal of materials chemistry A, 1: 1875-1884. https://doi.org/10.1039/C2TA00173J10.1039/C2TA00173J Search in Google Scholar

Macías-García, A., García-Sanz-Calcedo, J., Carrasco-Amador, J.B., and Segura-Cruz, R. (2019). Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters Sustainability 11: 2672 doi:10.3390/su1109267210.3390/su11092672 Search in Google Scholar

Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4: 4806–4814. https://doi.org/10.1021/nn100636810.1021/nn100636820731455 Search in Google Scholar

Moussavi, G., Hossaini, Z., and Pourakbar, M. (2016). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chemical Engineering Journal, 287: 665–673. DOI https://doi.org/10.1016/j.cej.2012.11.06910.1016/j.cej.2012.11.069 Search in Google Scholar

Mukoko, T., Mupa, M., Guyo, U., and Dziike, F. (2015). Preparation of Rice Hull Activated Carbon for the Removal of Selected Pharmaceutical Waste Compounds in Hospital Effluent, Journal of Environmental and Analytical Toxicology, 7: 2–9. DOI: 10.4172/2161-0525.S7-00810.4172/2161-0525.S7-008 Search in Google Scholar

Nasir, S., Hussein, M.Z., Yusof, N.A., and Zainal, Z. (2017). Electrochemical Energy Storage Potentials of Waste Biomass: Oil Palm Leaf- and Palm Kernel Shell-Derived Activated Nanomaterials 7, 182. doi:10.3390/nano707018210.3390/nano7070182553524828703757 Search in Google Scholar

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., and Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review Chemosphere 93: 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.05910.1016/j.chemosphere.2013.07.05924025536 Search in Google Scholar

Shih, C., Lin, S., Sharma, R., Strano, M.S., and Blankschtein, D. (2012). Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study Langmuir 28:235–241.https://doi.org/10.1021/la203607w10.1021/la203607w22039913 Search in Google Scholar

Somanathan, T., Prasad, K., Ostrikov, K.K., Saravanan, A., and Krishna, V.M. (2015). Graphene oxide Synthesis from Agro-waste Nanomaterials 5: 826-834. https://doi.org/10.3390/nano5020826.10.3390/nano5020826531288728347038 Search in Google Scholar

Sui, Z.Y., Zhou, D., and Han, B.H. (2016). Fabrication of graphene-based porous materials and their applications in environmental fields. In Graphene Science Handbook. Applications and Industrialization; Edited by M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura and J.L. Gervasoni, Springer, FL, 399–418. ISBN 9780429169359 Search in Google Scholar

Sun, Y., Yang, S., Zhao, G., Wang, Q., and Wang, X. (2013). Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides, Chemistry: An Asian Journal, 8: 2755–2761. https://doi.org/10.1002/asia.20130049610.1002/asia.20130049623939931 Search in Google Scholar

Tijani, J.O., Fatoba, O.O., Babajide, O.O., and Petrik, L.F. (2016). Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review, Environmental chemistry letters, 14: 27−49. DOI 10.1007/s10311-015-0537-z10.1007/s10311-015-0537-z Search in Google Scholar

Tohamy, H-A.S., Anis, B., Youssef, M.A., Abdallah, A.E.M., El-Sakhawy, M., and Kamel, S. (2020). Preparation of eco-friendly graphene oxide from agricultural wastes for water treatment. Desalination and Water Treatment. 191: 250–262. doi: 10.5004/dwt.2020.2565210.5004/dwt.2020.25652 Search in Google Scholar

Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., and Qi, Y. (2013). Adsorption characteristics and behaviours of graphene oxide for Zn (II) removal from aqueous solution, Applications of surface science, 279: 432–440. https://doi.org/10.1016/j.apsusc.2013.04.13310.1016/j.apsusc.2013.04.133 Search in Google Scholar

Yuan, G., Yan, L., Liang, Z., Hui, H., Junjie, H., Syed, M.S., and Xingguang, S. (2012). Calcined graphene/MgAl-layered double hydroxides for enhanced Cr (VI) removal, Journal of Colloid and Interface Science, 368: 540–546. DOI:10.1016/J.CEJ.2013.01.09010.1016/j.cej.2013.01.090 Search in Google Scholar

Zhang, Y.L., Zhang, J., Dai, C.M., Zhou, X.F., and Liu, S.G. (2013). Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydrate polymers 97: 809−816. DOI: 10.1016/j.carbpol.2013.05.07210.1016/j.carbpol.2013.05.07223911519 Search in Google Scholar

eISSN:
2544-6320
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Biochemie, Umweltchemie, Industrielle Chemie