Uneingeschränkter Zugang

The Zinc-Copper Connection In Autism Spectrum Disorder: Pioneering Work Of Dr. Geir Bjørklund

   | 23. Apr. 2024

Zitieren

Lordan, R.; Storni, C.; De Benedictis, C.A. Autism Spectrum Disorders: Diagnosis and Treatment. In Autism Spectrum Disorders, Grabrucker, A.M., Ed.; Brisbane (AU), 2021. Search in Google Scholar

American Psychiatric Association. Diagnostic and statistical manual of mental disorders : DSM-5; American Psychiatric Publishing: Washington, DC, 2013. Search in Google Scholar

Amadi, C.N.; Orish, C.N.; Frazzoli, C.; Orisakwe, O.E. Association of autism with toxic metals: A systematic review of case-control studies. Pharmacol Biochem Behav 2022, 212, 173313, doi:10.1016/j. pbb.2021.173313. Search in Google Scholar

Mehta, S.Q.; Behl, S.; Day, P.L.; Delgado, A.M.; Larson, N.B.; Stromback, L.R.; Huebner, A.R.; DeGrado, T.R.; Davis, J.M.; Jannetto, P.J.; et al. Evaluation of Zn, Cu, and Se Levels in the North American Autism Spectrum Disorder Population. Front Mol Neurosci 2021, 14, 665686, doi:10.3389/ fnmol.2021.665686. Search in Google Scholar

Bjørklund, G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Wars) 2013, 73, 225-236, doi:10.55782/ ane-2013-1932. Search in Google Scholar

Sauer, A.K.; Stanton, J.E.; Hans, S.; Grabrucker, A.M. Autism Spectrum Disorders: Etiology and Pathology. In Autism Spectrum Disorders, Grabrucker, A.M., Ed.; Brisbane (AU), 2021. Search in Google Scholar

Bjørklund, G.; Dadar, M.; Pivina, L.; Dosa, M.D.; Semenova, Y.; Aaseth, J. The role of zinc and copper in insulin resistance and diabetes mellitus. Curr Med Chem 2020, 27, 6643-6657, doi:10.2174/092986732666619 0902122155. Search in Google Scholar

Meguid, N.A.; Bjørklund, G.; Gebril, O.H.; Dosa, M.D.; Anwar, M.; Elsaeid, A.; Gaber, A.; Chirumbolo, S. The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 2019, 119, 577-583, doi:10.1007/s13760-019-01181-9. Search in Google Scholar

Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 2006, 20, 3-18, doi:10.1016/j. jtemb.2006.01.006. Search in Google Scholar

Li, J.; Cao, D.; Huang, Y.; Chen, B.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr 2022, 9, 798078, doi:10.3389/fnut.2022.798078. Search in Google Scholar

Gefeller, E.M.; Bondzio, A.; Aschenbach, J.R.; Martens, H.; Einspanier, R.; Scharfen, F.; Zentek, J.; Pieper, R.; Lodemann, U. Regulation of intracellular Zn homeostasis in two intestinal epithelial cell models at various maturation time points. J Physiol Sci 2015, 65, 317-328, doi:10.1007/s12576-015-0369-4. Search in Google Scholar

Maxfield, L.; Shukla, S.; Crane, J.S. Zinc Deficiency. [Updated 2023 Jun 28]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available online: www.ncbi.nlm.nih.gov/books/NBK493231 (accessed on 4 February 2024). Search in Google Scholar

Agnew, U.M.; Slesinger, T.L. Zinc Toxicity. [Updated 2022 Dec 11]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554548 (accessed on 4 February 2024). Search in Google Scholar

Lopez, M.J.; Royer, A.; Shah, N.J. Biochemistry, Ceruloplasmin. [Updated 2023 Feb 24]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554422 (accessed on 4 February 2024). Search in Google Scholar

Jouybari, L.; Kiani, F.; Islami, F.; Sanagoo, A.; Sayehmiri, F.; Hosnedlova, B.; Dosa, M.D.; Kizek, R.; Chirumbolo, S.; Bjørklund, G. Copper concentrations in breast cancer: A systematic review and meta-analysis. Curr Med Chem 2020, 27, 6373-6383, doi:10.21 74/0929867326666190918120209. Search in Google Scholar

Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. J Community Hosp Intern Med Perspect 2017, 7, 265-268, doi:10.1080 /20009666.2017.1351289. Search in Google Scholar

Samadi, A.; Isikhan, S.Y.; Tinkov, A.A.; Lay, I.; Dosa, M.D.; Skalny, A.V.; Skalnaya, M.G.; Chirumbolo, S.; Bjørklund, G. Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin Nutr 2020, 39, 1849-1856, doi:10.1016/j. clnu.2019.07.026. Search in Google Scholar

Gasmi, A.; Shanaida, M.; Oleshchuk, O.; Semenova, Y.; Mujawdiya, P.K.; Ivankiv, Y.; Pokryshko, O.; Noor, S.; Piscopo, S.; Adamiv, S.; et al. Natural ingredients to improve immunity. Pharmaceuticals (Basel) 2023, 16, doi:10.3390/ph16040528. Search in Google Scholar

Gould, L.; Kendall, N.R. Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev 2011, 24, 176-182, doi:10.1017/ S0954422411000059. Search in Google Scholar

Bjørklund, G.; Dadar, M.; Pen, J.J.; Chirumbolo, S.; Aaseth, J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2019, 109, 1000-1007, doi:10.1016/j.biopha.2018.10.076. Search in Google Scholar

Bjørklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s disease: Mechanisms and biochemical processes. Curr Med Chem 2018, 25, 2198-2214, doi:10.2174/0929867 325666171129124616. Search in Google Scholar

Saldanha Tschinkel, P.F.; Bjørklund, G.; Conon, L.Z.Z.; Chirumbolo, S.; Nascimento, V.A. Plasma concentrations of the trace elements copper, zinc and selenium in Brazilian children with autism spectrum disorder. Biomed Pharmacother 2018, 106, 605-609, doi:10.1016/j.biopha.2018.06.174. Search in Google Scholar

Skalny, A.V.; Skalnaya, M.G.; Grabeklis, A.R.; Skalnaya, A.A.; Tinkov, A.A. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr 2018, 57, 2313-2322, doi:10.1007/s00394-017-1584-y. Search in Google Scholar

Bulcke, F.; Dringen, R.; Scheiber, I.F. Neurotoxicity of copper. Adv Neurobiol 2017, 18, 313-343, doi:10.1007/978-3-319-60189-2_16. Search in Google Scholar

Lutsenko, S.; Washington-Hughes, C.; Ralle, M.; Schmidt, K. Copper and the brain noradrenergic system. J Biol Inorg Chem 2019, 24, 1179-1188, doi:10.1007/s00775-019-01737-3. Search in Google Scholar

Sharma, A.; Castellani, R.J.; Smith, M.A.; Muresanu, D.F.; Dey, P.K.; Sharma, H.S. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. Int Rev Neurobiol 2019, 146, 1-44, doi:10.1016/ bs.irn.2019.06.005. Search in Google Scholar

Pagano, G.; Castello, G. Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv Exp Med Biol 2012, 724, 291-299, doi:10.1007/978-1-4614-0653-2_22. Search in Google Scholar

Bjørklund, G.; Aaseth, J.; Dadar, M.; Chirumbolo, S. Molecular targets in Alzheimer’s disease. Mol Neurobiol 2019, 56, 7032-7044, doi:10.1007/s12035-019-1563-9. Search in Google Scholar

Foster, M.; Samman, S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 2012, 4, 676-694, doi:10.3390/nu4070676. Search in Google Scholar

Subramanian Vignesh, K.; Deepe, G.S., Jr. Metallothioneins: Emerging modulators in immunity and infection. Int J Mol Sci 2017, 18, doi:10.3390/ijms18102197. Search in Google Scholar

Si, M.; Lang, J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol 2018, 11, 107, doi:10.1186/s13045-018-0645-x. Search in Google Scholar

Guerbette, T.; Boudry, G.; Lan, A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022, 63, 101546, doi:10.1016/j.molmet.2022.101546. Search in Google Scholar

Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022, 18, 243-258, doi:10.1038/ s41574-021-00626-7. Search in Google Scholar

Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlova, B.; Kizek, R.; et al. Oxidative stress in autism spectrum disorder. Mol Neurobiol 2020, 57, 2314-2332, doi:10.1007/s12035-019-01742-2. Search in Google Scholar

Liu, X.; Lin, J.; Zhang, H.; Khan, N.U.; Zhang, J.; Tang, X.; Cao, X.; Shen, L. Oxidative stress in autism spectrum disorder-Current progress of mechanisms and biomarkers. Front Psychiatry 2022, 13, 813304, doi:10.3389/fpsyt.2022.813304. Search in Google Scholar

Blazewicz, A.; Grabrucker, A.M. Metal profiles in autism spectrum disorders: A crosstalk between toxic and essential metals. Int J Mol Sci 2022, 24, doi:10.3390/ ijms24010308. Search in Google Scholar

Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015, 16, 26087-26124, doi:10.3390/ijms161125942. Search in Google Scholar

El-Ansary, A.; Zayed, N.; Al-Ayadhi, L.; Qasem, H.; Anwar, M.; Meguid, N.A.; Bhat, R.S.; Dosa, M.D.; Chirumbolo, S.; Bjørklund, G. GABA synaptopathy promotes the elevation of caspases 3 and 9 as proapoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol Belg 2021, 121, 489-501, doi:10.1007/s13760-019-01226-z. Search in Google Scholar

Szpregiel, I.; Wronska, D.; Kmiecik, M.; Palka, S.; Kania, B.F. Glutamic acid decarboxylase concentration changes in response to stress and altered availability of glutamic acid in rabbit (Oryctolagus cuniculus) brain limbic structures. Animals (Basel) 2021, 11, doi:10.3390/ani11020455. Search in Google Scholar

Chirumbolo, S.; Bjørklund, G. Agathisflavone and GABA(A) receptors in the biflavone-mediated action on rat primary cortical neurons. Neurotoxicology 2018, 66, 43-44, doi:10.1016/j.neuro.2018.03.002. Search in Google Scholar

Al-Otaish, H.; Al-Ayadhi, L.; Bjørklund, G.; Chirumbolo, S.; Urbina, M.A.; El-Ansary, A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab Brain Dis 2018, 33, 843-854, doi:10.1007/ s11011-018-0186-6. Search in Google Scholar

Li, S.O.; Wang, J.L.; Bjørklund, G.; Zhao, W.N.; Yin, C.H. Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 2014, 25, 1216-1220, doi:10.1097/WNR.0000000000000251. Search in Google Scholar

Macedoni-Luksic, M.; Gosar, D.; Bjørklund, G.; Orazem, J.; Kodric, J.; Lesnik-Musek, P.; Zupancic, M.; France-Stiglic, A.; Sesek-Briski, A.; Neubauer, D.; et al. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol Trace Elem Res 2015, 163, 2-10, doi:10.1007/s12011-014-0121-6. Search in Google Scholar

Craciun, E.C.; Bjørklund, G.; Tinkov, A.A.; Urbina, M.A.; Skalny, A.V.; Rad, F.; Dronca, E. Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab Brain Dis 2016, 31, 887-890, doi:10.1007/s11011-016-9823-0. Search in Google Scholar

Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Bjørklund, G.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 2017, 32, 195-202, doi:10.1007/s11011-016-9899-6. Search in Google Scholar

eISSN:
1841-4036
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere