1. bookVolumen 57 (2022): Heft 2 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-6104
Erstveröffentlichung
03 May 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

A Script-Driven Approach to Mapping Satellite-Derived Topography and Gravity Data Over the Zagros Fold-and-Thrust Belt, Iran

Online veröffentlicht: 28 Jul 2022
Volumen & Heft: Volumen 57 (2022) - Heft 2 (June 2022)
Seitenbereich: 110 - 137
Eingereicht: 01 Apr 2022
Akzeptiert: 20 Jun 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-6104
Erstveröffentlichung
03 May 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Adams, A., Brazier, R., Nyblade, A., Rodgers, A. and AlAmri, A. (2009). Source parameters for moderate earthquakes in the Zagros mountains with implications for the depth extent of seismicity, Bulletin of the Seismological Society of America 99: 2044–2049. https://doi.org/10.1785/0120080314. Search in Google Scholar

Afzal, P., Heidari, S. M., Ghaderi, M. and Yasrebi, A. B. (2017). Determination of mineralization stages using correlation between geochemical fractal modeling and geological data in Arabshah sedimentary rock-hosted epithermal gold deposit, NW Iran, Ore Geology Reviews 91: 278–295.10.1016/j.oregeorev.2017.09.021 Search in Google Scholar

Ahmadhadi, F., Daniel, J., Azzizadeh, M. and Lacombe, O. (2008). Evidence for pre-folding vein development in the Oligo-Miocene Asmari Formation in the Central Zagros Fold Belt, Iran, Tectonics 27: TC1016. https://doi.org/10.1029/2006TC001978. Search in Google Scholar

Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics 229: 211–238. https://doi.org/10.1016/0040-1951(94)90030-2. Search in Google Scholar

Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro- foreland evolution, American Journal of Science 304: 1–20. https://doi.org/10.2475/ajs.304.1.1. Search in Google Scholar

Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran, American Journal of Science 307: 1064–1095. https://doi.org/10.2475/09.2007.02. Search in Google Scholar

Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A. and Nutman, A. P. (2012). Recognition of late cretaceous hasanbag ophiolite-arc rocks in the Kurdistan region of the Iraqi zagros suture zone: a missing link in the paleogeography of the closing Neotethys ocean, Lithosphere 4: 395–410. https://doi.org/10.1130/L207.1. Search in Google Scholar

Ali, S. A., Mohajjel, M., Aswad, K., Ismail, S., Buckman, S. and Jones, B. (2014). Tectono-stratigraphy and general structure of the northwestern Zagros collision zone across the Iraq-Iran border, Environmental Earth Sciences 4: 92–110. Search in Google Scholar

Allen, M. B., Saville, C., Blanc, E. J., Talebian, M. and Nissen, E. (2013). Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt, Tectonics 32: 171–190. https://doi.org/10.1002/tect.20025. Search in Google Scholar

Amante, C. and Eakins, B. W. (2009). Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum, 19. https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf. Search in Google Scholar

Andreo, V., Dogliotti, A. I., Tauro, C. and Neteler, M. (2015). Spatio-temporal variations in chlorophyll-a concentration in the patagonic continental shelf: An example of satellite time series processing with GRASS GIS temporal modules, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2249–2252. Search in Google Scholar

Aubourg, C., Smith, B., Bakhtari, H. R., Guya, N. and Eshraghi, A. (2008). Tertiary block rotations in the Fars Arc (Zagros, Iran), Geophysical Journal International 173: 659–673.10.1111/j.1365-246X.2008.03732.x Search in Google Scholar

Authemayou, C., Chardon, D., Bellier, O., Malekzadeh, Z., Shabanian, E. and Abbassi, M. R. (2006). Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran), Tectonics 25: TC3002. https://doi.org/10.1029/2005TC001860. Search in Google Scholar

Bahroudi, A. and Koyi, H. A. (2003). Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach, Journal of the Geological Society 160: 719–733. https://doi.org/10.1144/0016-764902-135. Search in Google Scholar

Baikpour, S., Zulauf, G., Sebti, A., Kheirolahi, H. and Dietl, C. (2010). Analogue and geophysical modelling of the Garmsar Salt Nappe, Iran: constraints on the evolution of the Alborz Mountains, Geophysical Journal International 182: 599–612. https://doi.org/10.1111/j.1365-246X.2010.04656.x. Search in Google Scholar

Bayer, R., Chery, J., Tatar, M., Vernant, P., Abbassi, M., Masson, F., Nilforoushan, F., Doerflinger, E., Regard, V. and Bellier, O. (2006). Active deformation in Zagros–Makran transition zone inferred from GPS measurements, Geophysical Journal International 165: 373–381. https://doi.org/10.1111/j.1365-246X.2006.02879.x. Search in Google Scholar

Beaumont, P. (1972). Alluvial fans along the foothills of the Elburz Mountains, Iran, Palaeogeography, Palaeoclimatology, Palaeoecology 12(4): 251–273.10.1016/0031-0182(72)90022-3 Search in Google Scholar

Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics 241: 193–224. https://doi.org/10.1016/0040-1951(94)00185-C. Search in Google Scholar

Beydoun, Z. R., Hughes, M. W. and Stoneley, R. (1992). Petroleum in the zagros basin: a late tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich paleozoic-mesozoic passive-margin shelf, in R. W. Macqueen and D. A. Leckie (eds), Foreland Basins and Fold Belts, Vol. 55, AAPG Memoir, pp. 309–340. https://doi.org/10.1306/M55563C12. Search in Google Scholar

Blanc, E. P., Allen, M. B., Inger, S. and Hassani, H. (2003). Structural styles in the Zagros simple folded zone, Iran, Journal of the Geological Society 160: 401–412. https://doi.org/10.1144/0016-764902-110. Search in Google Scholar

Bosold, A., Schwarzhans, W., Julapour, A., Ashrafzadeh, A. R. and Ehsani, S. M. (2005). The structural geology of the High Central Zagros revisited (Iran), Petroleum Geoscience 11: 225–238. https://doi.org/10.1144/1354-079304-646. Search in Google Scholar

Burberry, C. M., Cosgrove, J. W. and Liu, J. G. (2010). A study of fold characteristics and deformation style using the evolution of the land surface: Zagros Simply Folded Belt. Iran, Geological Society, London Special Publications 330: 139–154. https://doi.org/10.1144/SP330.8. Search in Google Scholar

Casciello, E., Vergés, J., Saura, E., Casini, G., Fernández, N., Blanc, E., Homke, S. and Hunt, D. W. (2009). Fold patterns and multilayer rheology of the Lurestan Province, Zagros simply folded belt (Iran), Journal of the Geological Society 166: 947–959. https://doi.org/10.1144/0016-76492008-138. Search in Google Scholar

Cooper, M. (2007). Structural style and hydrocarbon prospectivity in fold and thrust belts: a global review, in A. C. Ries, R. W. Butler and R. H. Graham (eds), Deformation of the Continental Crust: The Legacy of Mike Coward. Special Publications, Vol. 272, London: Geological Society, London: UK, pp. 447–472. https://doi.org/10.1144/GSL.SP.2007.272.01.23. Search in Google Scholar

De Sarkar, A., Biyahut, N., Kritika, S. and Singh, N. (2012). An environment monitoring interface using grass gis and python, 2012 Third International Conference on Emerging Applications of Information Technology, pp. 235–238. Search in Google Scholar

Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J., Hinderer, J., Hatam, Y., Luck, B., Le Moigne, N., Sedighi, M. and Khorrami, F. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran, Geophysical Journal International 183: 1287–1301. https://doi.org/10.1111/j.1365-246X.2010.04811.x. Search in Google Scholar

Ebi, N. B. (1995). Image interpretation of topographic maps on a medium scale via frame-based modelling, Proceedings, International Conference on Image Processing, Vol. 1, pp. 250–253. Search in Google Scholar

Elyasi, S. (2016). Petroleum source-rock potential of the Piranj oil field, Zagros basin, Marine and Petroleum Geology pp. 448–454. Search in Google Scholar

Eskandari, S. and Ali Mahmoudi Sarab, S. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth and field data, Ecological Informatics 70: 101727.10.1016/j.ecoinf.2022.101727 Search in Google Scholar

Farr, T. G. and Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data, Eos, Transactions American Geophysical Union 81(48): 583–585.10.1029/EO081i048p00583 Search in Google Scholar

Garajeh, M. K., Feizizadeh, B., Blaschke, T. and Lakes, T. (2022). Detecting and mapping karst landforms using object-based image analysis: Case study: Takht-soleiman and parava mountains, iran, The Egyptian Journal of Remote Sensing and Space Science 25(2): 473–489.10.1016/j.ejrs.2022.03.009 Search in Google Scholar

GDAL/OGR (2021). Geospatial data abstraction software library, https://gdal.org. Open Source Geospatial Foundation. Search in Google Scholar

GEBCO Compilation Group (2020). Gebco 2020 grid, Dataset. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9. Search in Google Scholar

Gedicke, S., Bonerath, A., Niedermann, B. and Haunert, J.-H. (2021). Zoomless Maps: External Labeling Methods for the Interactive Exploration of Dense Point Sets at a Fixed Map Scale, IEEE Transactions on Visualization and Computer Graphics 27(2): 1247–1256.10.1109/TVCG.2020.3030399 Search in Google Scholar

Gilliot, J.-M., Stamon, G. and Le Men, H. (1993). A knowledge-based system in image processing for communication networks study in aerial images a tool for cartography automation, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC, Vol. 2, pp. 77–82. Search in Google Scholar

Heidari, S. M., Afzal, P., Ghaderi, M. and Sadeghi, B. (2021). Detection of mineralization stages using zonality and multifractal modeling based on geological and geochemical data in the Au-(Cu) intrusion-related Gouzal-Bolagh deposit, NW Iran, Ore Geology Reviews 139: 104561.10.1016/j.oregeorev.2021.104561 Search in Google Scholar

Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H. and E., S. (2001). Progressive unconformities within an evolving foreland fold—thrust belt, Zagros Mountains, Journal of the Geological Society 158: 969–981. https://doi.org/10.1144/0016-764901-007. Search in Google Scholar

Hijmans, R. J. and van Etten, J. (2012). raster: Geographic analysis and modeling with raster data, http://CRAN.R-project.org/package=raster. R package version 2.0-12. Search in Google Scholar

Horn, B. (1981). Hill shading and the reflectance map, Proceedings of the IEEE 69(1): 14–47.10.1109/PROC.1981.11918 Search in Google Scholar

Hosseini, S. T., Asghari, O. and Emery, X. (2021). An enhanced direct sampling (DS) approach to model the geological domain with locally varying proportions: Application to Golgohar iron ore mine, Iran, Ore Geology Reviews 139: 104452.10.1016/j.oregeorev.2021.104452 Search in Google Scholar

Hrovat, A., Vilhar, A., Ozimek, I., Javornik, T. and Kočan, E. (2013). Grass-raplat - radio planning tool for grass gis system, ICECom 2013, pp. 1–5. Search in Google Scholar

Huang, F., Liu, D., Liu, P., Wang, S., Zeng, Y., Li, G., Yu, W., Wang, J., Zhao, L. and Pang, L. (2007). Research on cluster-based parallel gis with the example of parallelization on grass gis, Sixth International Conference on Grid and Cooperative Computing (GCC 2007), pp. 642–649. Search in Google Scholar

Jahani, S., Callot, J., Letouzey, J. and Frizon de Lamotte, D. (2009). The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and relationships between salt plugs, folding, and faulting, Tectonics 28: 1–22. https://doi.org/10.1029/2008TC002418. Search in Google Scholar

Jiménez-Munt, I., Fernàndez, M., Saura, E., Vergés, J. and Garcia-Castellanos, D. (2012). 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran), Geophysical Journal International 190: 1311–1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x. Search in Google Scholar

Kasalica, V. and Lamprecht, A.-L. (2018). Automated composition of scientific workflows: A case study on geographic data manipulation, 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 362–363. Search in Google Scholar

Kazemi, S., Lim, S. and Ge, L. (2005). Integration of cartographic knowledge with generalization algorithms, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., Vol. 5, pp. 3502–3505.10.1109/IGARSS.2005.1526600 Search in Google Scholar

Khodabakhshnezhad, A. and Arian, M. (2016). Salt Tectonics in the Southern Iran, International Journal of Geosciences 7: 367–377. https://doi.org/10.4236/ijg.2016.73029. Search in Google Scholar

Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V. and Lemenkova, P. (2017). Land Planning as a Support for Sustainable Development Based on Tourism: A Case Study of Slovak Rural Region, Environmental Engineering and Management Journal 16(2): 449–458. https://doi.org/10.30638/eemj.2017.045. Search in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences 5: 28–42. https://doi.org/10.2478/s13533-012-0120-0. Search in Google Scholar

Koshnaw, R. I., Stockli, D. F., Horton, B. K., Teixell, A., Barber, D. E. and Kendall, J. J. (2020). Late Miocene deformation kinematics along the NW Zagros fold-thrust belt, Kurdistan region of Iraq: Constraints from apatite (U-Th)/He thermochronometry and balanced cross sections, Tectonics 39: e2019TC005865. https://doi.org/10.1029/2019TC005865. Search in Google Scholar

Lemenkov, V. and Lemenkova, P. (2021). Using TeX Markup Language for 3D and 2D Geological Plotting, Foundations of Computing and Decision Sciences 46: 43–69. https://doi.org/10.2478/fcds-2021-0004. Search in Google Scholar

Lemenkova, P. (2019a). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis, GeoScience Engineering 65: 1–22. https://doi.org/10.35180/gse-2019-0020. Search in Google Scholar

Lemenkova, P. (2019b). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language, Geodesy and Cartography 45: 57–84. https://doi.org/10.3846/gac.2019.3785. Search in Google Scholar

Lemenkova, P. (2019c). Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean, Reports on Geodesy and Geoinformatics 108: 9–22. https://doi.org/10.2478/rgg-2019-0008. Search in Google Scholar

Lemenkova, P. (2020a). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset, Geodesy and Cartography 46: 98–112. https://doi.org/10.3846/gac.2020.11524. Search in Google Scholar

Lemenkova, P. (2020b). Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea, Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia 75: 115–141. https://doi.org/10.17951/b.2020.75.115-141. Search in Google Scholar

Lemenkova, P. (2020c). GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin, Geodetski List 74: 19–39. https://doi.org/10.5281/zenodo.3794155. Search in Google Scholar

Lemenkova, P. (2020d). NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library, Geomatics and Environmental Engineering 14: 25–45. https://doi.org/10.7494/geom.2020.14.4.25. Search in Google Scholar

Lemenkova, P. (2020e). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea, Geology, Geophysics and Environment 46: 205–222. https://doi.org/10.7494/geol.2020.46.3.205. Search in Google Scholar

Lemenkova, P. (2020f). Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT, Bulletin of Geography. Physical Geography Series 18: 41–60. https://doi.org/10.2478/bgeo-2020-0004. Search in Google Scholar

Lemenkova, P. (2021a). Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness, Czech Polar Reports 11: 67–85.10.5817/CPR2021-1-6 Search in Google Scholar

Lemenkova, P. (2021b). Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT, Kartografija i Geoinformacije 20: 16–37. https://doi.org/10.32909/kg.20.36.2. Search in Google Scholar

Lemenkova, P. (2021c). Mapping topographic, geophysical and gravimetry data of Pakistan – a contribution to geological understanding of Sulaiman Fold Belt and Muslim Bagh Ophiolite Complex, Geophysica 56: 3–26. https://doi.org/10.5281/zenodo.5779189. Search in Google Scholar

Lemenkova, P. (2021d). Submarine tectonic geomorphology of the Pliny and Hellenic Trenches reflecting geologic evolution of the southern Greece, Rudarsko Geolosko Naftni Zbornik 36: 33–48. https://doi.org/10.17794/rgn.2021.4.4. Search in Google Scholar

Lemenkova, P. (2021e). Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean, Baltica 34: 27–46. https://doi.org/10.5200/baltica.2021.1.3. Search in Google Scholar

Lemenkova, P. (2021f). Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean, Miscellanea Geographica 25: 213–225. https://doi.org/10.2478/mgrsd-2020-0038. Search in Google Scholar

Lemenkova, P. (2022a). Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data, Geosciences 12: 140.10.3390/geosciences12030140 Search in Google Scholar

Lemenkova, P. (2022b). Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts, Data 7: 74.10.3390/data7060074 Search in Google Scholar

Lemenkova, P. (2022c). Mapping submarine geomorphology of the Philippine and Mariana trenches by an automated approach using GMT scripts, Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 76: 258–266.10.2478/prolas-2022-0039 Search in Google Scholar

Lemenkova, P. (2022d). Seismicity in the Afar Depression and Great Rift Valley, Ethiopia, Environmental Research, Engineering and Management 78: 83–96.10.5755/j01.erem.78.1.29963 Search in Google Scholar

Lemenkova, P. (2022e). Tanzania Craton, Serengeti Plain and Eastern Rift Valley: mapping of geospatial data by scripting techniques, Estonian Journal of Earth Sciences 71: 61–79.10.3176/earth.2022.05 Search in Google Scholar

Lindh, P. and Lemenkova, P. (2021a). Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments, Acta Mechanica et Automatica 15: 236–248. https://doi.org/10.2478/ama-2021-0030. Search in Google Scholar

Lindh, P. and Lemenkova, P. (2021b). Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments, Nordic Concrete Research 65: 39–62. https://doi.org/10.2478/ncr-2021-0012. Search in Google Scholar

Lindh, P. and Lemenkova, P. (2022a). Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden, Baltica 35: 47–59.10.5200/baltica.2022.1.4 Search in Google Scholar

Lindh, P. and Lemenkova, P. (2022b). Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå, Bulletin of the Polish Academy of Sciences: Technical Sciences 70: 1–9. Search in Google Scholar

Lindh, P. and Lemenkova, P. (2022c). Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden, Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38: 147–168. Search in Google Scholar

Liu, X., Wen, Z., Wang, Z., Song, C. and He, Z. (2018). Structural characteristics and main controlling factors on petroleum accumulation in Zagros Basin, Middle East, Journal of Natural Gas Geoscience 3(5): 273–281.10.1016/j.jnggs.2018.11.004 Search in Google Scholar

Lopez-Ornelas, E. and Sedes, F. (2008). Cartographic elements extraction using high resolution remote sensing imagery and xml modeling, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, pp. II–430–II–432. Search in Google Scholar

Mafi-Gholami, D., Zenner, E. K. and Jaafari, A. (2022). Mapping recent (1997–2017) and future (2030) county-level social vulnerability to socio-economic conditions and natural hazards throughout iran, Journal of Cleaner Production 355: 131841.10.1016/j.jclepro.2022.131841 Search in Google Scholar

Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignières, M., Nankali, H. and Van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophysical Journal International 170: 436–440. https://doi.org/10.1111/j.1365-246X.2007.03477.x. Search in Google Scholar

Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F. and Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data, Geophysical Journal International 160: 217–226. https://doi.org/10.1111/j.1365-246X.2004.02465.x. Search in Google Scholar

Mokhtari, Z. and Sadeghi, B. (2021). Geochemical anomaly definition using multifractal modeling, validated by geological field observations: Siah jangal area, se iran, Geochemistry 81(4): 125774. Mineral exploration: a journey from fieldwork, to laboratory work, computational modelling and mineral processing. Search in Google Scholar

Mostafa Mousavi, S., Ataie-Ashtiani, B. and Mossa Hosseini, S. (2022). Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern iran, Journal of Hydrology p. 128072. Search in Google Scholar

Motaghi, K., Shabanian, E. and Kalvandi, F. (2017). Underplating along the northern portion of the Zagros suture zone, Iran, Geophysical Journal International 210: 375–389. https://doi.org/10.1093/gji/ggx168. Search in Google Scholar

Motaghi, K., Shabanian, E., Tatar, M., Cuffaro, M. and Doglioni, C. (2017). The south Zagros suture zone in teleseismic images, Tectonophysics 694: 292–301. https://doi.org/10.1016/j.tecto.2016.11.012. Search in Google Scholar

Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T. and Kargar, S. (2007). Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt: the Zagros Folded Belt (Fars, Iran), Tectonics 26: TC5006. https://doi.org/10.1029/2007TC002098. Search in Google Scholar

Nissen, E., Tatar, M., Jackson, J. A. and Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran, Geophysical Journal International 186: 928–944. https://doi.org/10.1111/j.1365-246X.2011.05119.x. Search in Google Scholar

Palano, M., Imprescia, P., Agnon, A. and Gresta, S. (2018). An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt, Geophysical Journal International 213: 194–209. https://doi.org/10.1093/gji/ggx524. Search in Google Scholar

Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J. and M., M. (2006). Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran), Geophysical Journal International 166: 227–237. https://doi.org/10.1111/j.1365-246X.2006.02920.x. Search in Google Scholar

Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research 117: B04406. https://doi.org/10.1029/2011JB008916. Search in Google Scholar

R Core Team (2020). R: A language and environment for statistical computing. r foundation for statistical computing, URL: https://www.R-project.org/. Vienna, Austria. Search in Google Scholar

Regard, V., Bellier, O., Thomas, J., Abbassi, M. R., Mercier, J., Shabanian, E., Feghhi, K. and Soleymani, S. (2004). Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system, Tectonics 23: TC4007. https://doi.org/10.1029/2003TC001599. Search in Google Scholar

RStudio Team (2017). Rstudio: Integrated development environment for r, https://www.RStudio.com/. RStudio Inc., Boston, MA. Search in Google Scholar

Sandwell, D. T., Müller, R. D. v Smith, W. H. F., Garcia, E. and Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science 7346: 65–67. https://doi.org/10.1126/science.1258213.25278606 Search in Google Scholar

Sandwell, D. T. and Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry, Journal of Geophysical Research 102: 10039–10054. https://doi.org/10.1029/96JB03223. Search in Google Scholar

Saura, E., Garcia-Castellanos, D., Casciello, E., Parravano, V., Urruela, A. and Vergés, J. (2015). Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq), Tectonics 34. https://doi.org/10.1002/2014TC003660. Search in Google Scholar

Schoenbohm, L. M. (2022). 2.07 - Tectonic Geomorphology of Continental Collision Zones, in J. J. F. Shroder (ed.), Treatise on Geomorphology, 2 edn, Academic Press, Oxford, pp. 120–149. Search in Google Scholar

Senturk, S., Cakir, Z. and Berk Ustundag, B. (2016). The potential of sentinel-ia interferometric sar data in monitoring of surface subsidence caused by overdrafting groundwater in agricultural areas, 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–4. Search in Google Scholar

Sepehr, M. and Cosgrove, J. W. (2004). Structural framework of the Zagros Fold–Thrust Belt, Iran, Marine and Petroleum Geology 21: 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006. Search in Google Scholar

Shi, H., Du, Z., Lu, Y., Hu, X. and Ke, X. (2009). Amery ice shelf digital elevation model from glas and gmt, 2009 Third International Symposium on Intelligent Information Technology Application, Vol. 2, pp. 129–133. Search in Google Scholar

Soleimani, M. and Jodeiri Shokri, B. (2016). Intrinsic geological model generation for chromite pods in the Sabzevar ophiolite complex, NE Iran, Ore Geology Reviews 78: 138–150.10.1016/j.oregeorev.2016.03.013 Search in Google Scholar

Spooner, C., Scheck-Wenderoth, M., Cacace, M., Götze, H.-J. and Luijendijk, E. (2020). The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity, Global and Planetary Change 193: 103288. https://doi.org/10.1016/j.gloplacha.2020.103288. Search in Google Scholar

Talebian, M. and Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran, Geophysical Journal International 156: 506–526. https://doi.org/10.1111/j.1365-246X.2004.02092.x. Search in Google Scholar

Tavakoli, F., Walperdorf, A., Authemayou, C., Nankal, i. H. R., Hatzfeld, D., Tatar, M., Djamour, Y., Nilforoushan, F. and Cotte, N. (2008). Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities, Earth and Planetary Science Letters 275: 342–347. https://doi.org/10.1016/j.epsl.2008.08.030. Search in Google Scholar

Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., Morsalnejad, D. and Mazzoli, S. (2018). Early Jurassic rifting of the Arabian passive continental margin of the Neo-Tethys. Field evidence from the Lurestan region of the Zagros fold-and-thrust belt, Iran, Tectonics 37: 2586–2607. https://doi.org/10.1029/2018TC005192. Search in Google Scholar

Tennekes, M. (2018). tmap: Thematic Maps in R, Journal of Statistical Software 84: 1–39. https://doi.org/10.18637/jss.v084.i06. Search in Google Scholar

Toosi, A., Javan, F. D., Samadzadegan, F., Mehravar, S., Kurban, A. and Azadi, H. (2022). Citrus orchard mapping in juybar, iran: Analysis of ndvi time series and feature fusion of multi-source satellite imageries, Ecological Informatics p. 101733.10.1016/j.ecoinf.2022.101733 Search in Google Scholar

Virden, W., Habermann, T., Glover, G., Divins, D., Sharman, G. and Fox, C. (2004). Multibeam bathymetric data at NOAA/NGDC, Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Vol. 2, pp. 1159–1162 Vol.2. Search in Google Scholar

Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M. and Liu, M. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography 4: 64–84. https://doi.org/10.3724/SP.J.1261.2015.00068. Search in Google Scholar

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F. and Tian, D. (2019). The Generic Mapping Tools version 6., Geochemistry, Geophysics, Geosystems 20: 5556–5564. https://doi.org/10.1029/2019GC008515. Search in Google Scholar

Yamini-Fard, F., Hatzfeld, D., Tatar, M. and Mokhtari, M. (2006). Microearthquake seismicity at the intersection between the Kazerun fault and the Main Recent Fault (Zagros, Iran), Geophysical Journal International 166: 186–196. https://doi.org/10.1111/j.1365-246X.2006.02891.x. Search in Google Scholar

Zarasvandi, A., Fereydouni, Z., Alizadeh, B., Absar, N., Dutt Shukla, A., Qaim Raza, M., Ashok, M. and Zentilli, M. (2021). Phosphogenesis in the zagros fold-thrust belt, iran: The link between the tethyan paleoenvironment and phosphate ore deposition, Ore Geology Reviews 139: 104563.10.1016/j.oregeorev.2021.104563 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo