Uneingeschränkter Zugang

Evaluation of Biofilm Forming Potential and Antimicrobial Resistance Profile of S. aureus and P. aeruginosa Isolated from Peripheral Venous Catheters and Urinary Catheters In Algeria, in vitro Study


Zitieren

Mirzaei, R., and Ranjbar, R. (2022). Hijacking host components for bacterial biofilm formation: An advanced mechanism. International Immunopharmacology, 103, 108471.Search in Google Scholar

Tan, X., Qin, N., Wu, C., et al. (2015). Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus. Sci Rep, 5, e11997. Search in Google Scholar

Su, Y., Yrastorza, J.T.; Matis, M.; Cusick, J.; Zhao, S.; Wang, G.; Xie, J. (2022). Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. Adv. Sci, 9, 2203291.Search in Google Scholar

Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 35, 322–332. Search in Google Scholar

Chen, M., Yu, Q., Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections Int. J. Mol. Sci, 14 (9), 18488-18501Search in Google Scholar

Yadav, M.K., Chae, S.W., Go, Y.Y., Im, G.J., Song, J.J. (2017). In vitro Multi-Species Biofilms of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa and Their Host Interaction during In vivo Colonization of an Otitis Media Rat Model Front. Cell. Infect. Microbiol, 18.Search in Google Scholar

Jones, C.J. and Wozniak, D.J. (2017). Psl produced by mucoid Pseudomonas aeruginosa contributes to the establishment of biofilms and immune evasion. MBio, 8(3).Search in Google Scholar

Christensen, G.D., Simpson, W.A., Younger, J.J., et al. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol, 22(6), 996–1006. Search in Google Scholar

Freeman, J., Falkiner, F.R., Keane, C.T. (1989). New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol, 42, 872-4Search in Google Scholar

Christensen, G., Bisno, A., Simpsom, W., Beachey, E. (1982). Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunology, 37, 318-326.Search in Google Scholar

Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic Vlahovic, M. (2000). A modified microtiter-plate test for quantification staphylococcal biofilm formation. J Microbiol Methods, 40, 175–9.Search in Google Scholar

Nachimuthu, R., Subramani, R. Maray, S. Gothandam, K.M. Sivamangala, K. Manohar, P. and Bozdogan B. (2016). Characterizationofcarbapenem-resistant Gram-negative bacteria from Tamil Nadu. J. Chemother, 28, 371–374.Search in Google Scholar

WHO Regional Office for Africa, (2021). ANTIMICROBIAL RESISTANCE IN THE WHO AFRICAN REGION: a systematic literature review. Brazzaville.Search in Google Scholar

Brun-buisson, C. (1994). Analyse critique des méthodes diagnostiques d’infection liée au cathéter sur matériel enlevé. Réanimation Urgence, 3, 343-346.Search in Google Scholar

Winn, W., Allen, S., Janda, W., Koneman, E., Procop, G., Schreckenberger, P. and Woods, G. (2006). Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th Edition: Lippincott Williams and Wilkins.Search in Google Scholar

Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M. and Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. Journal of Microbiological Methods, 68(3), 605-612.Search in Google Scholar

Clinical and Laboratory Standard Institute, (2015). Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational supplement. CLSI document M100-S25 (Clinical and Laboratory Standards Institute, Wayne, PA)Search in Google Scholar

Gunardi, W.D., Karuniawati, A., Umbas, R., Bardosono, S., Lydia, A., Soebandrio, A., Safari, D. (2021). Bio-film-producing bacteria and risk factors (gender and duration of catheterization) charac-terized as catheter-associated bio-film formation. International Journal of Microbiology, 8869275, 1–10.Search in Google Scholar

Walker, J.N., Flores-Mireles, A.L., Lynch, A.J.L. (2020). High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol, 38, 2237–2245.Search in Google Scholar

Choudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh, N., Larsen, E., Runnegar, N., Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control. American Journal of Infection Control, 47(12), 1484–1488Search in Google Scholar

Sahli, F., Feidjel, R. and Laalaoui, R. (2017). Hemodialysis catheter-related infection: rates, risk factors and pathogens. Journal of Infection and Public Health, 10 (4), 403-408Search in Google Scholar

Zhang, M., Xu, Y., Jiang Z, Qian J, Zhang Z, Sun N, Xie J and Li T. (2017). Study on risk factor of central venous catheter infection in ICU: 1 160 patients report. Chinese Critical Care Medicine. 29 (12).Search in Google Scholar

Sohail, M. and Latif, Z. (2018). Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in central venous catheters. Revista da Sociedade Brasileira de Medicina Tropical, 51(5), 603-609. Search in Google Scholar

Moradali, M.F., Ghods, S., Rehm, B.H.A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol, 7, 39.Search in Google Scholar

Arciola, C.R., Baldassarri, L. and Montanaro, L. (2001). Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol, 39, 2151 - 2156. Search in Google Scholar

Kara Terki, I., Hassaine, H., Kara Terki A., Bessouh, N., Kara Terki, N., Bellifa, S., Mhamedi, I. and lachachi, M. (2020). Effects of certain disinfectants and antibiotics on biofilm formation by Staphylococcus aureus isolated from medical devices at the University Hospital Center of Sidi Bel Abbes, Algeria. African Journal of Clinical and Experimental Microbiology, 21 (4). Search in Google Scholar

Knobloch, J., Horstkotte, M., Rhode, H., Mack, D. (2002). Evaluation of different detection methods for biofilm formation in Staphylococcus aureus. Med Microbiol Immunol, 19, 101-106. Search in Google Scholar

Mathur, T., Singhal, S., Khan, S., Upadhyay, D.J., Fatma, T., and Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol, 24 (1), 25-29.Search in Google Scholar

Taj, Y., Essa, F., Aziz, F., Kazmi, S. (2012). Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries, 6, 403-409.Search in Google Scholar

Kline, K.A. and Lewis, A.L. (2016). Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr, 4(2). Search in Google Scholar

Pusparajah P., Letchumanan V., Law J.W., Ab Mutalib N.S., Ong Y.S., Goh B.H., Tan L.T., Lee L.H. (2021). Streptomyces sp.-a treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci, 22:9360. Search in Google Scholar

Vuong, C., Voyich, J.M., Fischer, E.R., Braughton, K.R., Whitney, A.R., DeLeo, F.R. et al. (2004). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol, 6, 269–275.Search in Google Scholar

Rewatkar, A.R. and Wadher, B.J. (2013). Staphylococcus aureus and Pseudomonas aeruginosa- Biofilm formation Methods. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 8 (5), 36-40Search in Google Scholar

Murugan, K., Selvanayaki, K. and Al-Sohaibani, S. (2016). Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi Journal of Biological Sciences, 23 (1), 150-159.Search in Google Scholar

Newman, J.W., Floyd, R.V., Fothergill, J.L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett, 364(15).Search in Google Scholar

Fatima, K., Indu, S., Meher, R. et al. (2011). Detection of Biofilm formation in Staphylococcus aureus. Does it have a role in t/t of MRSA infections? Trends in Med Res, 2, 116–123.Search in Google Scholar

Lade, H., Park, J.H., Chung, S.H., Kim, I.H., Kim, J.-M., Joo, H.-S., Kim, J.-S. (2019). Biofilm Formation by Staphylococcus aureus Clinical Isolates is Differentially Affected by Glucose and Sodium Chloride Supplemented Culture Media. J. Clin. Med. 8, 1853. Search in Google Scholar

Holá, V., Ruzicka, F. and Horka, M. (2010). Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunology & Medical Microbiology, 59 (3), 525–528.Search in Google Scholar

Lima, J.L.d.C., Alves, L.R., Jacomé, P.R.L.A., Neto, B., Pacífico, J., Maciel, M.A.V., et al. (2018). Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis, 22(2), 129–36.Search in Google Scholar

Sabir, N., Ikram, A., Zaman, G. et al. (2017). Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. American Journal of Infection Control, 45(10), 1101-1105.Search in Google Scholar

Abdel Halim, R.M., Kassem, N.N. and Mahmoud, B.S. (2018). Detection of Biofi lm Producing Staphylococci among Different Clinical Isolates and Its Relation to Methicillin Susceptibility. Open Access Maced J Med Sci, 6(8), 1335-1341.Search in Google Scholar

Neupane, S., Pant, N.D., Khatiwada, S., Chaudhary, R., Banjara, M.R. (2016). Correlation between biofilm formation and resistance toward different commonly used antibiotics along with extended spectrum beta lactamase production in Uropathogenic Escherichia coli isolated from the patients suspected of urinary tract infections visiting Shree Birendra Hospital, Chhauni, Kathmandu Nepal. Antimicrob Resist Infect Control, 5:5.Search in Google Scholar

Soto, S.M. (2014). Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol, 543974.Search in Google Scholar

Cepas, V., López, Y., Muñoz, E., et al. (2019). Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microbial Drug Resistance, 25(1), 72–79. Search in Google Scholar

Heidari, R., Farajzadeh Sheikh, A., Hashemzadeh, M., Farshadzadeh, Z., Salmanzadeh, S. and Saki, M. (2022). Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Molecular Biology Reports, 49, 3811–3822 Search in Google Scholar

Jafari, F., and Elyasi, S. (2021). Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Review of Clinical Pharmacology, 14(9), 1113–1131.Search in Google Scholar

Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S. et al. (2021). No Correlation between biofilm formation, virulence factors and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics, 10, 1134Search in Google Scholar

El Amari, E.B., Chamot, E., Auckenthaler, R., Pechère, J., van Delden, C. (2001). Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clinical Infectious Diseases, 33, 1859–1864.Search in Google Scholar

Kang, C.I., Kim, S.H., Park, W.B., Lee, K.D., Kim, H.B., Kim, E.C., Oh, M.D., Choe, K.W. (2005). Risk factors for antimicrobial resistance and influence of resistance on mortality in patients with bloodstream infection caused by Pseudomonas aeruginosa. Microb Drug Resist, 11, 68–74.Search in Google Scholar

Paterson, D.L. (2002). Looking for risk factors for the acquisition of antibiotic resistance: a 21st-century approach. Clinical Infectious Diseases, 34, 1564–1567. Search in Google Scholar

eISSN:
2543-8050
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Geowissenschaften, Kartografie und Photogrammetrie, Biologie, Biotechnologie, Botanik, Medizin, Veterinärmedizin