Uneingeschränkter Zugang

Effects of dietary yeast β-1.3/1.6-glucans on oxidative stress biomarkers in hearts and livers of rainbow trout (Oncorhynchus mykiss Walbaum), European whitefish (Coregonus lavaretus L.), and grayling (Thymallus thymallus L.)


Zitieren

Abdelhamid, F. M., Elshopakey, G. E., Aziza, A. E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 96, 213-222.10.1016/j.fsi.2019.12.009 Search in Google Scholar

Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., Li, H. (2007). Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 22(4), 394-402.10.1016/j.fsi.2006.06.011 Search in Google Scholar

Angulo, C., Maldonado, M., Delgado, K., Reyes-Becerril, M. (2017). Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection. Developmental & Comparative Immunology, 71, 18-27.10.1016/j.dci.2017.01.020 Search in Google Scholar

Anthonymuthu, T. S., Kenny, E. M., Bayır, H. (2016). Therapies targeting lipid peroxidation in traumatic brain injury. Brain Research, 1640, 57-76.10.1016/j.brainres.2016.02.006 Search in Google Scholar

Bar-Or, D., Carrick, M., Tanner II, A, Lieser, M. J., Rael, L. T., Brody, E. (2018). Overcoming the Warburg effect: is it the key to survival in sepsis? Journal off Critical Care, 43, 197-201.10.1016/j.jcrc.2017.09.012 Search in Google Scholar

Bleier, L., Dröse, S. (2013). Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(11-12), 1320-1331.10.1016/j.bbabio.2012.12.002 Search in Google Scholar

Botros, M., Sikaris, K. A. (2013). The de ritis ratio: the test of time. The Clinical Biochemist Reviews, 34(3), 117-130. Search in Google Scholar

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.10.1016/0003-2697(76)90527-3 Search in Google Scholar

Bridle, A. R., Carter, C. G., Morrison, R. N., Nowak, B. F. (2005). The effect of β-glucan administration on macrophage respiratory burst activity and Atlantic salmon, Salmo salar L., challenged with amoebic gill disease – evidence of inherent resistance. Journal of Fish Diseases, 28(6), 347-356. Search in Google Scholar

Campa-Córdova, A. I., Hernández-Saavedra, N. Y., Ascencio, F. (2002). Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(4), 557-565.10.1016/S1532-0456(02)00125-4 Search in Google Scholar

Clementi, E., Brown, G. C., Feelisch, M., Moncada, S. (1998). Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proceedings of the National Academy of Sciences, 95(13), 7631-7636.10.1073/pnas.95.13.7631227069636201 Search in Google Scholar

Dalmo, R. A., Bøgwald, J. (2008). β-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25(4), 384-396.10.1016/j.fsi.2008.04.00818606550 Search in Google Scholar

Devi, G., Harikrishnan, R., Paray, B. A., Al-Sadoon, M. K., Hoseinifar, S. H., Balasundaram, C. (2019). Effect of symbiotic supplemented diet on innate-adaptive immune response, cytokine gene regulation and antioxidant property in Labeo rohita against Aeromonas hydrophila. Fish & Shellfish Immunology, 89, 687-700.10.1016/j.fsi.2019.04.036 Search in Google Scholar

Djordjevic, B., Škugor, S., Jørgensen, S. M., Overland, M., Mydland, L. T., Krasnov, A. (2009). Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a beta-glucan from mushroom Lentinula edodes. Fish & Shellfish Immunology, 26(2), 201-209.10.1016/j.fsi.2008.10.012 Search in Google Scholar

Do Huu, H., Sang, H. M., Thuy, N. T. T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish & Shellfish Immunology, 54, 402-410.10.1016/j.fsi.2016.03.161 Search in Google Scholar

Dröse, S., Bleier, L., Brandt, U. (2011). A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Molecular Pharmacology, 79(5), 814-522.10.1124/mol.110.070342 Search in Google Scholar

Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., Porotov, I. G. (1995). Oxidative modification of human blood serum proteins; the method of its determination. Voprosy Meditsinskoi Khimii, 80(6), 24-26. Search in Google Scholar

Engstad, R. E., Robertsen, B. (1994). Specificity of a β-glucan receptor on macrophages from Atlantic salmon (Salmo salar L.). Developmental & Comparative Immunology, 18(5), 397-408.10.1016/0145-305X(94)90005-1 Search in Google Scholar

Eschenko, N. D., Volski, G. G. (1982). Determination of succinic acid level and succinate dehydrogenase activity. Methods of biochemical study. National Leningrad University, Leningrad, p. 207-212. Search in Google Scholar

Falco, A., Miest, J. J., Pionnier, N., Pietretti, D., Forlenza, M., Wiegertjes, G. F., Hoole, D. (2014). β-Glucan-supplemented diets increase poly(I:C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio). Fish & Shellfish Immunology, 36(2), 494-502.10.1016/j.fsi.2013.12.00524370748 Search in Google Scholar

Galaktionova, L.P., Molchanov, A.V., El’chaninova, S.A., Varshavskiĩ, BIa. (1998). Lipid peroxidation in patients with gastric and duodenal peptic ulcers. Klinicheskaia Laboratornaia Diagnostika, (6), 10-14. Search in Google Scholar

Glatzle, D., Vuilleumier, J. P., Weber, F., Decker, K. (1974). Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia, 30(6), 665-667.10.1007/BF019215314151937 Search in Google Scholar

Herasimov, I., Plaksina, O. (2000). Non-enzymatic assessment of lactate and pyruvate concentrations in blood samples. Laboratorna Diagnostyka, 2, 46-48 (In Ukrainian). Search in Google Scholar

Iwama, G. K., Afonso, L. O., Vijayan, M. M. (1998). Stress in fish. Annals of the New York Academy of Sciences, 851, 304-310.10.1111/j.1749-6632.1998.tb09005.x Search in Google Scholar

Janssens, B. J., Childress J. J., Baguet F., Rees J. F. (2000). Reduced enzymatic antioxidative defense in deep-sea fish. Journal of Experimental Biology, 203(24), 3717-3725.10.1242/jeb.203.24.371711076735 Search in Google Scholar

Jardim-Messeder, D., Caverzan, A., Rauber, R., de Souza Ferreira, E., Margis-Pinheiro, M., Galina, A. (2015). Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist, 208(3), 776-789.10.1111/nph.1351526082998 Search in Google Scholar

Kamyshnikov, V. S. (2004). A reference book on the clinic and biochemical research and laboratory diagnostics. MEDpress-inform, Moscow, 5, 464-478. Search in Google Scholar

Kim, D. H., Austin, B. (2006). Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Veterinary Immunology and Immunopathology, 114(3-4), 297-304.10.1016/j.vetimm.2006.08.015 Search in Google Scholar

Kim, Y. S., Ke, F., Zhang, Q. Y. (2009). Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish & Shellfish Immunology, 27(2), 336-340.10.1016/j.fsi.2009.06.006 Search in Google Scholar

Koroliuk, M. A., Ivanova, L. I., Maĩorova, I. G., Tokarev, V. E. (1988). A method of determining catalase activity. Laboratornoe Delo, (1), 16-19. Search in Google Scholar

Kostiuk, V. A., Potapovich, A. I., Kovaleva, Zh. V. (1990). A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Voprosy Meditsinskoi Khimii, 36(2), 88-91. Search in Google Scholar

Kumari, J., Sahoo, P. K. (2006). Dietary β-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.). Journal of Fish Diseases, 29(2), 95-101.10.1111/j.1365-2761.2006.00691.x Search in Google Scholar

Levine, R. L. (2002). Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radical Biology and Medicine, 32(9), 790-796.10.1016/S0891-5849(02)00765-7 Search in Google Scholar

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464-478.10.1016/0076-6879(90)86141-H Search in Google Scholar

Librán-Pérez, M., Costa, M. M., Figueras, A., Novoa, B. (2018). β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 82, 173-182.10.1016/j.fsi.2018.08.005 Search in Google Scholar

Lin, S., Pan, Y., Luo, L., Luo, L. (2011). Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish & Shellfish Immunology, 31(6), 788-794.10.1016/j.fsi.2011.07.013 Search in Google Scholar

Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42(8), 656-666.10.1016/S0025-326X(01)00060-1 Search in Google Scholar

Małaczewska, J., Wójcik, R., Jung, L., Siwicki, A. K. (2010). Effect of Biolex β-HP on selected parameters of specific and non-specific humoral and cellular immunity in rats. Bulletin of the Veterinary Institute in Pulawy, 54, 75-80. Search in Google Scholar

Moin, V. M. (1986). A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Laboratornoe Delo, (12), 724-727. Search in Google Scholar

Muthappa, N. A., Gupta, S., Yengkokpam, S., Debnath, D., Kumar, N., Pal, A. K., Jadhao, S. B. (2014). Lipotropes promote immunobiochemical plasticity and protect fish against low-dose pesticide-induced oxidative stress. Cell Stress Chaperones, 19(1), 61-81.10.1007/s12192-013-0434-y385743523666764 Search in Google Scholar

O’Neill, L. A., Kishton, R. J., Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nature Reviews Immunology, 16(9), 553-565.10.1038/nri.2016.70500191027396447 Search in Google Scholar

Ortiz-Ordoñez, E., Uría-Galicia, E., Ruiz-Picos, R. A., Sánchez Duran, A.G., Trejo, Y. H., Sedeño-Díaz, J. E., López-López, E. (2011). Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Archives of Environmental Contamination and Toxicology, 61(3), 443-452.10.1007/s00244-011-9648-021305274 Search in Google Scholar

Petit, J., Wiegertjes, G. F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Developmental & Comparative Immunology, 64, 93-102.10.1016/j.dci.2016.03.00326945622 Search in Google Scholar

Pilarski, F., de Oliveira, C. A. F., de Souza, F. P. B. D., Zanuzzo, F. S. (2017). Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish & Shellfish Immunology, 70, 25-29.10.1016/j.fsi.2017.06.05928666865 Search in Google Scholar

Pionnier, N., Falco, A., Miest, J. J., Shrive, A. K., Hoole, D. (2014). Feeding common carp Cyprinus carpio with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish & Shellfish Immunology, 39(2), 285-295.10.1016/j.fsi.2014.05.00824830773 Search in Google Scholar

Quinlan, C. L., Orr, A. L., Perevoshchikova, I. V., Treberg, J. R., Ackrell, B. A., Brand, M. D. (2012). Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. Journal of Biological Chemistry, 287(32), 27255-27264.10.1074/jbc.M112.374629341106722689576 Search in Google Scholar

Reitman, S., Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56-63.10.1093/ajcp/28.1.5613458125 Search in Google Scholar

Sánchez-Salgado, J. L., Pereyra, M. A., Agundis, C., Calzada-Ruiz, M., Kantun-Briceño, E., Zenteno, E. (2019). In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. Fish & Shellfish Immunology, 94, 10-16.10.1016/j.fsi.2019.08.06131465869 Search in Google Scholar

Schmitt, P., Wacyk, J., Morales-Lange, B., Rojas, V., Guzmán, F., Dixon, B., Mercado, L. (2015). Immunomodulatory effect of cathelicidins in response to a β-glucan in intestinal epithelial cells from rainbow trout. Developmental & Comparative Immunology, 51(1), 160-169.10.1016/j.dci.2015.03.00725818364 Search in Google Scholar

Sevela, M., Tovarek, J. (1959). Method for the estimation of lactic dehydrogenase. Casopis Lekaru Ceskych, 98(27), 844-848. Search in Google Scholar

Siwicki, A. K., Anderson, D. P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: A. K. Siwicki, D. P. Anderson, J. Waluga (Eds.), Fish Disease Diagnosis and Prevention Methods, Olsztyn, Poland, p. 105-112. Search in Google Scholar

Skov, J., Kania, P. W., Holten-Andersen, L., Fouz, B., Buchmann, K. (2012). Immunomodulatory effects of dietary β-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish & Shellfish Immunology, 33(1), 111-120.10.1016/j.fsi.2012.04.00922548789 Search in Google Scholar

Song, L., Zhou, Y., Ni, S., Wang, X., Yuan, J., Zhang, Y., Zhang, S. (2020). Dietary intake of β-Glucans can prolong lifespan and exert an antioxidant action on aged fish Nothobranchius guentheri. Rejuvenation Research, 23(4), 293-301.10.1089/rej.2019.222331591931 Search in Google Scholar

Stadtman, E. R., Levine, R. L. (2000). Protein oxidation. Annals of the New York Academy of Sciences, 899(1), 191-208.10.1111/j.1749-6632.2000.tb06187.x Search in Google Scholar

Stier, H., Ebbeskotte, V., Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal, 13, 1, 1-9.10.1186/1475-2891-13-38 Search in Google Scholar

Suzuki, I., Tanaka, H., Kinoshita, A., Oikawa, S., Osawa, M., Yadomae, T. (1990). Effect of orally administered beta-glucan on macrophage function in mice. International Journal of Immunopharmacology, 12(6), 675-684.10.1016/0192-0561(90)90105-V Search in Google Scholar

Thitamadee, S., Srisala, J., Taengchaiyaphum, S., Sritunyalucksana, K. (2014). Double-dose β-glucan treatment in WSSV-challenged shrimp reduces viral replication but causes mortality possibly due to excessive ROS production. Fish & Shellfish Immunology, 40(2), 478-484.10.1016/j.fsi.2014.07.033 Search in Google Scholar

Tsukada, C., Yokoyama, H., Miyaji, C., Ishimoto, Y., Kawamura, H., Abo, T. (2003). Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cellular Immunology, 221(1), 1-5.10.1016/S0008-8749(03)00061-3 Search in Google Scholar

Ulvestad, J. S., Kumari, J., Seternes, T., Chi, H., Dalmo, R. A. (2018). Studies on the effects of LPS, ß-glucan and metabolic inhibitors on the respiratory burst and gene expression in Atlantic salmon macrophages. Journal of Fish Diseases, 41(7), 1117-1127.10.1111/jfd.1280629600522 Search in Google Scholar

Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178-189.10.1016/j.ecoenv.2005.03.01316406578 Search in Google Scholar

Vera-Jimenez, N. I., Pietretti, D., Wiegertjes, G. F., Nielsen, M. E. (2013). Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). Fish & Shellfish Immunology, 34(5), 1216-1222.10.1016/j.fsi.2013.02.00423454430 Search in Google Scholar

Volman, J. J., Ramakers, J. D., Plat, J. (2008). Dietary modulation of immune function by β-glucans. Physiology & Behavior, 94(2), 276-284.10.1016/j.physbeh.2007.11.04518222501 Search in Google Scholar

Wilhelm Filho, D. (1996). Fish antioxidant defenses – a comparative approach. Brazilian Journal of Medical and Biological Research, 29(12), 1735-1742. Search in Google Scholar

Wójcik, R. (2010). Effect of Biolex Beta-HP on phagocytic activity and oxidative metabolism of peripheral blood granulocytes and monocytes in rats intoxicated by cyclophosphamide. Polish Journal of Veterinary Sciences, 13(1), 181-188. Search in Google Scholar

Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey. Search in Google Scholar

Zhang, C. N., Li, X. F., Xu, W. N., Jiang, G. Z., Lu, K. L., Wang, L. N., Liu, W. B. (2013). Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish & Shellfish Immunology, 35(5), 1380-1386.10.1016/j.fsi.2013.07.04723932988 Search in Google Scholar

Zhu, M., Wu, S. (2018). The growth performance and nonspecific immunity of loach Paramisgurnus dabryanus as affected by dietary β-1,3-glucan. Fish & Shellfish Immunology, 83, 368-372.10.1016/j.fsi.2018.09.04930240801 Search in Google Scholar

eISSN:
2545-059X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Zoologie, andere