[
Abolghasemi S., Tehrani S., Sali S., Etefaghi M., Khederzadeh S. (2021). Assessment of agents and resistant patterns of nosocomial urinary tract infection by epsilometer test (E-Test) method in a tertiary hospital. J. Isfahan Med. Sch., 39: 451–455.
]Search in Google Scholar
[
Abushaheen M.A., Fatani A.J., Alosaimi M., Mansy W., George M., Acharya S., Rathod S., Divakar D.D., Jhugroo C., Vellappally S. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month., 66: 100971.
]Search in Google Scholar
[
Aguilar G.R., Swetschinski L.R., Weaver N.D., Ikuta K.S., Mestrovic T., Gray A.P., Chung E., Wool E.E., Han C., Hayoon A.G. (2023). The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. Lancet Reg. Heal., 25: 100561.
]Search in Google Scholar
[
Ahmed A., Gareib M. (2016). Detection of some antibiotics residues in chicken meat and chicken luncheon. Egypt J. Chem. Environ. Heal., 2: 315–323.
]Search in Google Scholar
[
Ahmed S.K., Hussein S., Chandran D., Islam M.R., Dhama K. (2023). The role of digital health in revolutionizing healthcare delivery and improving health outcomes in conflict zones. Digit. Heal., 9: 20552076231218160.
]Search in Google Scholar
[
Ahmed S.K., Hussein S., Qurbani K., Ibrahim R.H., Fareeq A., Mahmood K.A., Mohamed M.G. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surgery, Public Heal., 2: 100081.
]Search in Google Scholar
[
Akram F., Imtiaz M., Haq I. (2023). Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog., 174: 105923.
]Search in Google Scholar
[
Alhumaid S., Al Mutair A., Al Alawi Z., Alsuliman M., Ahmed G.Y., Rabaan A.A., Al-Tawfiq J.A., Al-Omari A. (2021). Knowledge of infection prevention and control among healthcare workers and factors influencing compliance: a systematic review. Antimicrob. Resist. Infect. Control., 10: 86.
]Search in Google Scholar
[
Ali T., Ahmed S., Aslam M. (2023 a). Artificial intelligence for antimicrobial resistance prediction: challenges and opportunities towards practical implementation. Antibiotics, 12: 523.
]Search in Google Scholar
[
Ali Y., Inusa I., Sanghvi G., Mandaliya V.B., Bishoyi A.K. (2023 b). The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microb. Pathog., 181: 106199.
]Search in Google Scholar
[
Ali A.S., Nazar M.E., Mustafa R.M., Hussein S., Qurbani K., Ahmed S.K. (2024). Impact of heavy metals on breast cancer. World Acad. Sci. J., 6: 1–12.
]Search in Google Scholar
[
Alm R.A., Gallant K. (2020). Innovation in antimicrobial resistance: The CARB-X Perspective. ACS Infect. Dis., 6: 1317–1322.
]Search in Google Scholar
[
Aminov R.I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol., 1: 1–7.
]Search in Google Scholar
[
Angeletti S. (2017). Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods 138: 20–29.
]Search in Google Scholar
[
Arnold B.J., Huang I.-T., Hanage W.P. (2022). Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol., 20: 206–218.
]Search in Google Scholar
[
Aslam B., Khurshid M., Arshad M.I., Muzammil S., Rasool M., Yasmeen N., Shah T., Chaudhry T.H., Rasool M.H., Shahid A., Xueshan X., Baloch Z. (2021). Antibiotic resistance: one health one world outlook. Front. Cell. Infect. Microbiol., 11: 771510.
]Search in Google Scholar
[
Athar M., Gervasoni S., Catte A., Basciu A., Malloci G., Ruggerone P., Vargiu A.V. (2023). Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? Microbiology, 169: 001307.
]Search in Google Scholar
[
Aziz D., Hassan S.A., Mamand D.M., Qurbani K. (2023 a). New azoazomethine derivatives: Synthesis, characterization, computational, solvatochromic UV‒Vis absorption and antibacterial studies. J. Mol. Struct., 1284: 135451.
]Search in Google Scholar
[
Aziz D.M., Hassan S.A., Amin A.A.M., Qurbani K., Aziz S.B. (2023b). A synergistic investigation of azothiazole derivatives incorporating thiazole moieties: a comprehensive exploration of their synthesis, characterization, computational insights, solvatochromism, and multimodal biological activity assessment. RSC Adv., 13: 34534–34555.
]Search in Google Scholar
[
Banerjee R., Humphries R. (2017). Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence, 8: 427–439.
]Search in Google Scholar
[
Baquero F., Martinez J.L., F. Lanza V., Rodríguez-Beltrán J., Galán J.C., San Millán A., Cantón R., Coque T.M. (2021). Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev., 34: e00050-19.
]Search in Google Scholar
[
Barawi S., Hamzah H., Hamasalih R., Mohammed A., Abdalrahman B., Abdalaziz S. (2021). Antibacterial mode of action of grapefruit seed extract against local isolates of beta-lactamases-resistant Klebsiella pneumoniae and its potential application. Intl. J. Agric. Biol., 26: 499–508.
]Search in Google Scholar
[
Berendsen B.J.A., Wegh R.S., Memelink J., Zuidema T., Stolker L.A.M. (2015). The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 132: 258–268.
]Search in Google Scholar
[
Bianco G., Boattini M., Iannaccone M., Cavallo R., Costa C. (2020). Evaluation of the NG-Test CTX-M MULTI immunochromato-graphic assay for the rapid detection of CTX-M extended-spectrum-β-lactamase producers from positive blood cultures. J. Hosp. Infect., 105: 341–343.
]Search in Google Scholar
[
Branda F., Scarpa F. (2024). Implications of artificial intelligence in addressing antimicrobial resistance: innovations, global challenges, and healthcare’s future. Antibiotics, 13: 502.
]Search in Google Scholar
[
Bruno A., Mackay V.C. (2012). Antimicrobial resistance and the activities of the Codex Alimentarius Commission. OIE Rev. Sci. Tech., 31: 317–323.
]Search in Google Scholar
[
Budiman C., Razali R., Rasid A.A., Rubil K., Halim M.A. (2023). Transposable elements: Uniqueness and applications. Malays J. Microbiol., 19: 828.
]Search in Google Scholar
[
Castro-Sánchez E., Moore L.S.P., Husson F., Holmes A.H. (2016). What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect. Dis., 16: 465.
]Search in Google Scholar
[
Cavany S., Nanyonga S., Hauk C., Lim C., Tarning J., Sartorius B., Dolecek C., Caillet C., Newton P.N., Cooper B.S. (2023). The uncertain role of substandard and falsified medicines in the emergence and spread of antimicrobial resistance. Nat. Commun., 14: 6153.
]Search in Google Scholar
[
Chakraborty N., Jha D., Roy I., Kumar P., Gaurav S.S., Marimuthu K., Ng O.-T., Lakshminarayanan R., Verma N.K., Gautam H.K. (2022). Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol., 20: 375.
]Search in Google Scholar
[
Charnot-Katsikas A., Tesic V., Love N., Hill B., Bethel C., Boonlayangoor S., Beavis K.G. (2018). Use of the accelerate pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J. Clin. Microbiol., 56: 10–1128.
]Search in Google Scholar
[
Chen J.S., Ma E., Harrington L.B., Da Costa M., Tian X., Palefsky J.M., Doudna J.A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360: 436–439.
]Search in Google Scholar
[
Chen L., Kumar S., Wu H. (2023). A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Arch. Microbiol. 205: 356.
]Search in Google Scholar
[
Chokshi A., Sifri Z., Cennimo D., Horng H. (2019). Global contributors to antibiotic resistance. J. Glob. Infect. Dis., 11: 36–42.
]Search in Google Scholar
[
Cizman M., Srovin T.P., Beović B., Vrdelja M., Bajec T., Blagus R. (2018). European Antibiotic Awareness Day (EAAD): Any impact on antibiotic consumption and public awareness in Slovenia? J. Antimicrob. Chemother., 73: 2567–2572.
]Search in Google Scholar
[
Cox G., Wright G.D. (2013). Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol., 303: 287–292.
]Search in Google Scholar
[
Da Silva G.J., Domingues S. (2016). Insights on the horizontal gene transfer of carbapenemase determinants in the opportunistic pathogen Acinetobacter baumannii. Microorganisms, 4: 29.
]Search in Google Scholar
[
Dadgostar P. (2019). Antimicrobial resistance: implications and costs. Infect. Drug Resist., 12: 3903–3910.
]Search in Google Scholar
[
Das D., Lin C.-W., Chuang H.-S. (2022). LAMP-based point-of-care biosensors for rapid pathogen detection. Biosensors, 12: 1068.
]Search in Google Scholar
[
Davies J. (1996). Origins and evolution of antibiotic resistance. Microbiologia, 12: 9–16.
]Search in Google Scholar
[
de la Lastra J.M.P., Wardell S.J.T., Pal T., de la Fuente-Nunez C., Pletzer D. (2024). From data to decisions: leveraging artificial intelligence and machine learning in combating antimicrobial resistance–a comprehensive review. J. Med. Syst., 48: 71.
]Search in Google Scholar
[
Diwan V., Tamhankar A.J., Khandal R.K., Sen S., Aggarwal M., Marothi Y., Iyer R.V., Sundblad-Tonderski K., Stålsby- Lundborg C. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 10: 414.
]Search in Google Scholar
[
Doyle R.M., O’Sullivan D.M., Aller S.D., Bruchmann S., Clark T., Coello Pelegrin A., Cormican M., Diez Benavente E., Ellington M.J., McGrath E. (2020). Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microb. Genom., 6: e000335.
]Search in Google Scholar
[
Dutescu I.A., Hillier S.A. (2021). Encouraging the development of new antibiotics: are financial incentives the right way forward? A systematic review and case study. Infect. Drug Resist., 5: 415–434.
]Search in Google Scholar
[
Ellington M.J., Ekelund O., Aarestrup F.M., Canton R., Doumith M., Giske C., Grundman H., Hasman H., Holden M.T.G., Hopkins K.L. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect., 23: 2–22.
]Search in Google Scholar
[
Eucast D. (2000). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Micro-biol. Infect., 6: 509–515.
]Search in Google Scholar
[
Evangelista A.T., Karlowsky J.A. (2016). Manual of Commercial Methods in Clinical Microbiology, Truant A. L., Tang Y., Waites K.B., Bébéar C., Rennie R.P. (eds). New Jersey, US., John Wiley & Sons, Inc., 414 pp.
]Search in Google Scholar
[
Fareeq A., Ahmed S.K., Hussein S., Qurbani K. (2024). Artificial intelligence-assisted nursing interventions in psychiatry for oral cancer patients: A concise narrative review. Oral Oncol. Rep., 10: 100343.
]Search in Google Scholar
[
Fattah B., Arif H., Hamzah H. (2022). Antimicrobial and antibiofilm activity of biosynthesized silver nanoparticles against beta-lactamase-resistant Enterococcus faecalis. Appl. Biochem. Biotechnol., 194: 2036–2046.
]Search in Google Scholar
[
Ferdinand A.S., McEwan C., Lin C., Betham K., Kandan K., Tamolsaian G., Pugeva B., McKenzie J., Browning G., Gilkerson J., Coppo M., James R., Peel T., Levy S., Townell N., Jenney A., Stewardson A., Cameron D., Macintyre A., Buising K., Howden B.P. (2024). Development of a cross-sectoral antimicrobial resistance capability assessment framework. BMJ Glob. Heal., 9: e013280.
]Search in Google Scholar
[
Fink G., D’Acremont V., Leslie H.H., Cohen J. (2020). Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect. Dis., 20: 179–187.
]Search in Google Scholar
[
Fisher J.F., Mobashery S. (2020). β-Lactams against the fortress of the Gram-positive Staphylococcus aureus bacterium. Chem. Rev., 121: 3412–3463.
]Search in Google Scholar
[
Fitzpatrick K.J., Rohlf H.J., Sutherland T.D., Koo K.M., Beckett S., Okelo W.O., Keyburn A.L., Morgan B.S., Drigo B., Trau M. (2021). Progressing antimicrobial resistance sensing technologies across human, animal, and environmental health domains. ACS Sensors, 6: 4283–4296.
]Search in Google Scholar
[
Fleming A. (1944). The discovery of penicillin. Br. Med. Bull., 2: 4–5.
]Search in Google Scholar
[
Florio W., Cappellini S., Giordano C., Vecchione A., Ghelardi E., Lupetti A. (2019). A new culture-based method for rapid identification of microorganisms in polymicrobial blood cultures by MALDI-TOF MS. BMC Microbiol., 19: 1–7.
]Search in Google Scholar
[
Francis F., Robertson R.C., Bwakura-Dangarembizi M., Prendergast A.J., Manges A.R. (2023). Antibiotic use and resistance in children with severe acute malnutrition and human immunodeficiency virus infection. Int. J. Antimicrob. Agents, 61: 106690.
]Search in Google Scholar
[
Fregonese L., Currie K., Elliott L. (2023). Hospital patient experiences of contact isolation for antimicrobial resistant organisms in relation to health care–associated infections: A systematic review and narrative synthesis of the evidence. Am. J. Infect. Control., 51: 1263–1271.
]Search in Google Scholar
[
Gajdács M., Spengler G., Urbán E. (2017). Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s cube of clinical microbiology? Antibiotics, 6: 25.
]Search in Google Scholar
[
Gauba A., Rahman K.M. (2023). Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics, 12: 1590.
]Search in Google Scholar
[
Góchez D., Raicek M., Ferreira J.P., Jeannin M., Moulin G., Erlacher-Vindel E. (2019). OIE annual report on antimicrobial agents intended for use in animals: Methods used. Front. Vet. Sci., 6: 1–9.
]Search in Google Scholar
[
Goel S. (2015). Antibiotics in the environment: A review. ACS. Symp. Ser., 1198: 19–42.
]Search in Google Scholar
[
Gopikrishnan M., Haryini S., Doss G.P. (2024). Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J. Basic Microbiol., 64: e2300579.
]Search in Google Scholar
[
Gupta Y., Ghrera A.S. (2021). Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch. Microbiol., 203: 3767–3784.
]Search in Google Scholar
[
Hassanain W.A., Izake E.L., Schmidt M.S., Ayoko G.A. (2017). Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens. Bioelectron., 91: 664–672.
]Search in Google Scholar
[
Hassanain W.A., Johnson C.L., Faulds K., Graham D., Keegan N. (2022). Recent advances in antibiotic resistance diagnosis using SERS: focus on the “Big 5” challenges. Analyst, 147: 4674–4700.
]Search in Google Scholar
[
Hatfull G.F., Dedrick R.M., Schooley R.T. (2022). Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med., 73: 197–211.
]Search in Google Scholar
[
Hema P., Appalaraju B., Someshwaran R. (2022). Molecular typing of methicillin resistant Staphylococcus aureus using coa gene polymerase chain reaction-restriction fragment length polymorphism: a cross-sectional study. J. Clin. Diagnostic Res., 16: DC0–DC07.
]Search in Google Scholar
[
Hetta H.F., Ramadan Y.N., Al-Harbi A.I., A. Ahmed E., Battah B., Abd Ellah N.H., Zanetti S., Donadu M.G. (2023). Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines, 11: 413.
]Search in Google Scholar
[
Hoelzer K., Wong N., Thomas J., Talkington K., Jungman E., Coukell A. (2017). Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res., 13: 1–38.
]Search in Google Scholar
[
Holmbom M., Möller V., Nilsson L.E., Giske C.G., Rashid M.U., Fredrikson M., Hällgren A., Hanberger H., Balkhed Å.Ö. (2020). Low incidence of antibiotic-resistant bacteria in south-east Sweden: An epidemiologic study on 9268 cases of bloodstream infection. PLoS One, 15: e0230501.
]Search in Google Scholar
[
Horne J.E., Brockwell D.J., Radford S.E. (2020). Role of the lipid bi-layer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem., 295: 10340–10367.
]Search in Google Scholar
[
Hoyos-Mallecot Y., Riazzo C., Miranda-Casas C., Rojo-Martín M.D., Gutiérrez-Fernández J., Navarro-Marí J.M. (2014). Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J. Micro-biol. Methods., 105: 98–101.
]Search in Google Scholar
[
Humphries R.M., Abbott A.N., Hindler J.A. (2019). Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J. Clin. Microbiol., 57: 10–1128.
]Search in Google Scholar
[
Hussein S., Sulaiman S., Ali S., Pirot R., Qurbani K., Hamzah H., Hassan O., Ismail T., Ahmed S.K., Azizi Z. (2023). Synthesis of silver nanoparticles from Aeromonas caviae for antibacterial activity and in vivo effects in rats. Biol. Trace Elem. Res., 202: 2764–2775.
]Search in Google Scholar
[
Hussein S., Ahmed S.K., Qurbani K., Fareeq A., Essa R.A. (2024). Infectious diseases threat amidst the war in Gaza. J. Med. Surgery, Public Heal., 2: 100067.
]Search in Google Scholar
[
Huszczynski S.M., Lam J.S., Khursigara C.M. (2019). The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens, 9: 6.
]Search in Google Scholar
[
Huttner B., Saam M., Moja L., Mah K., Sprenger M., Harbarth S., Magrini N. (2019). How to improve antibiotic awareness campaigns: findings of a WHO global survey. BMJ Glob. Heal., 4: e001239.
]Search in Google Scholar
[
Jadimurthy R., Mayegowda S.B., Nayak S.C., Mohan C.D., Rangappa K.S. (2022). Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol. Rep., 34: e00728.
]Search in Google Scholar
[
Javed M.U., Hayat M.T., Mukhtar H., Imre K. (2023). CRISPR-Cas9 System: A prospective pathway toward combatting antibiotic resistance. Antibiotics, 12: 1705.
]Search in Google Scholar
[
Jiang W., Bikard D., Cox D., Zhang F., Marraffini L.A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31: 233–239.
]Search in Google Scholar
[
Jonasson E., Matuschek E., Kahlmeter G. (2020). The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Che-mother., 75: 968–978.
]Search in Google Scholar
[
Justesen U.S., Acar Z., Sydenham T.V., Johansson Å. (2018). Antimicrobial susceptibility testing of Bacteroides fragilis using the MALDI Biotyper antibiotic susceptibility test rapid assay (MBTASTRA). Anaerobe, 54: 236–239.
]Search in Google Scholar
[
Kader D.A., Aziz D.M., Mohammed S.J., Maarof N.N.N., Karim W.O., Mhamad S.A., Rashid R.M., Ayoob M.M., Kayani K.F., Qurbani K. (2024). Green synthesis of ZnO/catechin nanocomposite: Comprehensive characterization, optical study, computational analysis, biological applications and molecular docking. Mater. Chem. Phys., 319: 129408.
]Search in Google Scholar
[
Kakuta N., Nakano R., Nakano A., Suzuki Y., Tanouchi A., Masui T., Horiuchi S., Endo S., Kakuta R., Ono Y. (2020). A novel mismatched PCR-restriction fragment length polymorphism assay for rapid detection of gyrA and parC mutations associated with fluoroquinolone resistance in Acinetobacter baumannii. Ann. Lab. Med., 40: 27–32.
]Search in Google Scholar
[
Kanokudom S., Assawakongkarat T., Akeda Y., Ratthawongjirakul P., Chuanchuen R., Chaichanawongsaroj N. (2021). Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS One, 16: e0248536.
]Search in Google Scholar
[
Kaprou G.D., Bergšpica I., Alexa E.A., Alvarez-Ordóñez A., Prieto M. (2021). Rapid methods for antimicrobial resistance diagnostics. Antibiotics, 10: 209.
]Search in Google Scholar
[
Karas M., Hillenkamp F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem., 60: 2299–2301.
]Search in Google Scholar
[
Kaushal V., Gupta R. (2022). Biomedical translational research: technologies for improving healthcare, Sobti R.C., Sobti A. (eds). Singapore, Springer Nature, 115 pp.
]Search in Google Scholar
[
Kellner M.J., Koob J.G., Gootenberg J.S., Abudayyeh O.O., Zhang F. (2020). Author correction: SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc., 15: 1311.
]Search in Google Scholar
[
Khadka S., Khadka S., Yadav G.K., Sharma A., Giri S., Joshi R., Amgain K. (2023). Assessment of rational use of antimicrobials: a cross-sectional study among people of Nepal. Ann. Med. Surg., 85: 3372–3380.
]Search in Google Scholar
[
Khan H., Jan Z., Ullah I., Alwabli A., Alharbi F., Habib S., Islam M., Shin B.-J., Lee M.Y., Koo J. (2024). A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanotechnol. Rev., 13: 20240056.
]Search in Google Scholar
[
Kim J.I., Maguire F., Tsang K.K., Gouliouris T., Peacock S.J., McAllister T.A., McArthur A.G., Beiko R.G. (2022). Machine learning for antimicrobial resistance prediction: current practice, limitations, and clinical perspective. Clin. Microbiol. Rev., 35: e00179-21.
]Search in Google Scholar
[
Kosiyaporn H., Chanvatik S., Issaramalai T., Kaewkhankhaeng W., Kulthanmanusorn A., Saengruang N., Witthayapipopsakul W., Viriyathorn S., Kirivan S., Kunpeuk W., Suphanchaimat R., Lekagul A., Tangcharoensathien V. (2020). Surveys of knowledge and awareness of antibiotic use and antimicrobial resistance in general population: A systematic review. PLoS One, 15: e0227973.
]Search in Google Scholar
[
Kuang X., Wang F., Hernandez K.M., Zhang Z., Grossman R.L. (2022). Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN. Sci. Rep., 12: 2427.
]Search in Google Scholar
[
Lahiri S., Venkataraman R., Jagan A., Deshmukh G., Patra S., Reddy V., Sangeetha V., Solanki R., Gupta J., Patel K. (2019). Evaluation of LAMP-based assays for carbapenemase genes. J. Med. Micro-biol., 68: 1431–1437.
]Search in Google Scholar
[
Landers T.F., Cohen B., Wittum T.E., Larson E.L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep., 127: 4–22.
]Search in Google Scholar
[
Lebreton F., Cattoir V. (2019). Bacterial resistance to antibiotics: from molecules to man, Bonev B.B., Brown N.M. (eds). New Jersey, US., John Wiley & Sons, Inc., 51 pp.
]Search in Google Scholar
[
Li G., Walker M.J., De Oliveira D.M.P. (2022). Vancomycin resistance in Enterococcus and Staphylococcus aureus. Microorganisms, 11: 24.
]Search in Google Scholar
[
Li Y., Li S., Wang J., Liu G. (2019). CRISPR/cas systems towards next-generation biosensing. Trends Biotechnol., 37: 730–743.
]Search in Google Scholar
[
Li Y., Xia L., Chen J., Lian Y., Dandekar A.A., Xu F., Wang M. (2021). Resistance elicited by sub-lethal concentrations of ampicillin is partially mediated by quorum sensing in Pseudomonas aeruginosa. Environ. Int., 156: 106619.
]Search in Google Scholar
[
Lin J., Chong S.Y., Oh M.W., Lew S.Q., Zhu L., Zhang X., Witola W.H., Lau G.W. (2024). Signal recognition particle RNA is critical for genetic competence and virulence of Streptococcus pneumoniae. J. Bacteriol., 206: e00004-24.
]Search in Google Scholar
[
Liu C., Goh S.G., You L., Yuan Q., Mohapatra S., Gin K.Y.-H., Chen B. (2023). Low concentration quaternary ammonium compounds promoted antibiotic resistance gene transfer via plasmid conjugation. Sci. Total Environ., 887: 163781.
]Search in Google Scholar
[
Liu Y., Zhou H., Hu Z., Yu G., Yang D., Zhao J. (2017). Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron., 94: 131–140.
]Search in Google Scholar
[
Lobanovska M., Pilla G. (2017). Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale J. Biol. Med., 90: 135–145.
]Search in Google Scholar
[
Maillard J.Y., Bloomfield S.F., Courvalin P., Essack S.Y., Gandra S., Gerba C.P., Rubino J.R., Scott E.A. (2020). Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. Am. J. Infect. Control., 48: 1090–1099.
]Search in Google Scholar
[
Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23: 795.
]Search in Google Scholar
[
Markley J.L., Wencewicz T.A. (2018). Tetracycline-inactivating enzymes. Front. Microbiol., 9: 370057.
]Search in Google Scholar
[
Martens E., Demain A.L. (2017). The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo), 70: 520–526.
]Search in Google Scholar
[
McDermott P.F., Tyson G.H., Kabera C., Chen Y., Li C., Folster J.P., Ayers S.L., Lam C., Tate H.P., Zhao S. (2016). Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob. Agents Chemother., 60: 5515–5520.
]Search in Google Scholar
[
Mendelson M., Lewnard J.A., Sharland M., Cook A., Pouwels K.B., Alimi Y., Mpundu M., Wesangula E., Weese J.S., Røttingen J.-A., Laxminarayan R. (2024). Ensuring progress on sustainable access to effective antibiotics at the 2024 UN General Assembly: a target-based approach. Lancet, 403: 2551–2564.
]Search in Google Scholar
[
Miller L.M., Simmons M.D., Silver C.D., Krauss T.F., Thomas G.H., Johnson S.D., Duhme-Klair A.-K. (2022). Antibiotic-functionalized gold nanoparticles for the detection of active β-lactamases. Nanoscale Adv., 4: 573–581.
]Search in Google Scholar
[
Moubareck C.A., Halat D.H. (2020). Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics, 9: 119.
]Search in Google Scholar
[
Müller V., Rajer F., Frykholm K., Nyberg L.K., Quaderi S., Fritzsche J., Kristiansson E., Ambjörnsson T., Sandegren L., Westerlund F. (2016). Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep., 6: 37938.
]Search in Google Scholar
[
Munk P., Knudsen B.E., Lukjancenko O., Duarte A.S.R., Van Gompel L., Luiken R.E.C., Smit L.A.M., Schmitt H., Garcia A.D., Hansen R.B. (2018). Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat. Microbiol., 3: 898–908.
]Search in Google Scholar
[
Murray C.J., Ikuta K.S., Sharara F., Swetschinski L., Robles Aguilar G., Gray A., Han C., Bisignano C., Rao P., Wool E., Johnson S.C., Browne A.J., Chipeta M.G., Fell F., Hackett S., Haines-Wood-house G., Kashef Hamadani B.H., Kumaran E.A.P., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399: 629–655.
]Search in Google Scholar
[
Muteeb G. (2023). Nanotechnology –a light of hope for combating antibiotic resistance. Microorganisms, 11: 1489.
]Search in Google Scholar
[
Naghavi M., Vollset S.E., Ikuta K.S., Swetschinski L.R., Gray A.P., Wool E.E., Aguilar G.R., Mestrovic T., Smith G., Han C. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet, 404: P1199–1226.
]Search in Google Scholar
[
Nashwan A.J., Barakat M., Niaz F., Tariq S., Ahmed S.K. (2024 a). Antimicrobial resistance: stewardship and one health in the Eastern Mediterranean region. Cureus, 16: e58478.
]Search in Google Scholar
[
Nashwan A.J., Shah H.H., Hussain T., Rauf S.A., Ahmed S.K. (2024b). Environmental drivers of antimicrobial resistance in low and middle-income countries: the impacts of a changing world. environ. Health Insights., 18: 11786302241246420.
]Search in Google Scholar
[
Ogunshe A., Adinmonyema P. (2014). Evaluation of bacteriostatic potency of expired oral paediatric antibiotics and implications on infant health. Pan. Afr. Med. J., 19: 1–11.
]Search in Google Scholar
[
Olatunji I., Bardaji D.K.R., Miranda R.R., Savka M.A., Hudson A.O. (2024). Artificial intelligence tools for the identification of antibiotic resistance genes. Front. Microbiol., 15: 1437602.
]Search in Google Scholar
[
Otaigbe I.I., Elikwu C.J. (2023). Drivers of inappropriate antibiotic use in low-and middle-income countries. JAC-Antimicrobial Resist., 5: dlad062.
]Search in Google Scholar
[
Pacios O., Blasco L., Bleriot I., Fernandez-Garcia L., Bardanca M.G., Ambroa A., López M., Bou G., Tomás M. (2020). Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics, 9: 65.
]Search in Google Scholar
[
Palacios Araya D., Palmer K.L., Duerkop B.A. (2021). CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathog., 17: e1009672.
]Search in Google Scholar
[
Park J.-W. (2022). Principles and applications of loop-mediated isothermal amplification to point-of-care tests. Biosensors, 12: 857.
]Search in Google Scholar
[
Parveen S., Garzon-Orjuela N., Amin D., McHugh P., Vellinga A. (2022). Public health interventions to improve antimicrobial resistance awareness and behavioural change associated with antimicrobial use: a systematic review exploring the use of social media. Antibiotics, 11: 669.
]Search in Google Scholar
[
Peters L., Olson L., Khu D.T.K., Linnros S., Le N.K., Hanberger H., Hoang N.T.B., Tran D.M., Larsson M. (2019). Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS One, 14: e0215666.
]Search in Google Scholar
[
Pulcini C., Clerc-Urmes I., Attinsounon C.A., Fougnot S., Thilly N. (2019). Antibiotic resistance of Enterobacteriaceae causing urinary tract infections in elderly patients living in the community and in the nursing home: A retrospective observational study. J. Antimicrob. Chemother., 74: 775–781.
]Search in Google Scholar
[
Pulingam T., Parumasivam T., Gazzali A.M., Sulaiman A.M., Chee J.Y., Lakshmanan M., Chin C.F., Sudesh K. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci., 170: 106103.
]Search in Google Scholar
[
Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L.P., Travisano K.A., Sit R., Amato R., Mumbengegwi D.R., Smith J.L., Bennett A., Gosling R., Mourani P.M., Calfee C.S., Neff N.F., Chow E.D., Kim P.S., Greenhouse B., DeRisi J.L., Crawford E.D. (2019). FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res., 47: E83.
]Search in Google Scholar
[
Qurbani K., Hussein S., Hamzah H., Sulaiman S., Pirot R., Motevaseli E., Azizi Z. (2022). Synthesis of silver nanoparticles by Raoultella planticola and their potential antibacterial activity against multi-drug-resistant isolates. Iran. J. Biotechnol., 20: 75–83.
]Search in Google Scholar
[
Qurbani K., Ali S., Hussein S., Hamzah H. (2024 a). Antibiotic resistance in Kurdistan, Iraq: A growing concern. New Microbes New Infect., 57: 101221.
]Search in Google Scholar
[
Qurbani K., Hussein S., Ahmed S.K., Darwesh H., Ali S., Hamzah H. (2024 b). Biosafety and biosecurity in the Iraqi Kurdistan Region: Challenges and necessities. J. Biosaf. Biosecur., 6: 65–66.
]Search in Google Scholar
[
Qurbani K.A., Amiri O., Othman G.M., Fatah A.A., Yunis N.J., Joshaghani M., Ahmed S.S., Abdulrahman N.A. (2024 c). Enhanced antibacterial efficacy through piezo memorial effect of CaTiO3/TiO2 Nano-Composite. Inorg. Chem. Commun., 165: 112470.
]Search in Google Scholar
[
Ramblière L., Guillemot D., Delarocque-Astagneau E., Huynh B.T. (2021). Impact of mass and systematic antibiotic administration on antibiotic resistance in low- and middle-income countries? A systematic review. Int. J. Antimicrob. Agents., 58: 106364.
]Search in Google Scholar
[
Rodríguez-Sánchez B., Cercenado E., Coste A.T., Greub G. (2019). Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance, 24: 1800193.
]Search in Google Scholar
[
Roope L.S.J., Smith R.D., Pouwels K.B., Buchanan J., Abel L., Eibich P., Butler C.C., Tan P.S., Sarah Walker A., Robotham J. V., Wordsworth S. (2019). The challenge of antimicrobial resistance: What economics can contribute. Science, 364: eaau4679.
]Search in Google Scholar
[
Rout A.K., Tripathy P.S., Dixit S., Behera D.U., Behera B., Das B.K., Behera B.K. (2024). Metagenomics analysis of sediments of river Ganga, India for bacterial diversity, functional genomics, antibiotic resistant genes and virulence factors. Curr. Res. Biotechnol., 7: 100187.
]Search in Google Scholar
[
Ruckert A., Lake S., Van Katwyk S.R. (2024). Developing a protocol on antimicrobial resistance through WHO’s pandemic treaty will protect lives in future pandemics. Global. Health, 20: 10.
]Search in Google Scholar
[
Salam M.A., Al-Amin M.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. (2023). Antimicrobial resistance: a growing serious threat for global public health. Health, 11: 1946.
]Search in Google Scholar
[
Saleemi M.A., Fang L., Lim V. (2023). An overview of antimicrobial resistance and its mechanisms. Bioeng. Nanomater. Wound Heal. Infect. Control., 1: 1–28.
]Search in Google Scholar
[
Samreen, Ahmad I., Malak H.A., Abulreesh H.H. (2021). Environmental antimicrobial resistance and its drivers: a potential threat to public health. J. Glob. Antimicrob. Resist., 27: 101–111.
]Search in Google Scholar
[
San Millan A. (2018). Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol., 26: 978–985.
]Search in Google Scholar
[
Sanderson H., Stephen Brown R., Hania P., McAllister T.A., Majury A., Liss S.N. (2019). Management of Emerging Public Health Issues and Risks. In: Multidisciplinary Approaches to the Changing Environment, Roig B., Weiss K., Thireau V. (eds). Amsterdam, Netherlands, Elsevier Academic Press, 147 pp.
]Search in Google Scholar
[
Saracino I.M., Pavoni M., Zullo A., Fiorini G., Lazzarotto T., Borghi C., Vaira D. (2021). Next generation sequencing for the prediction of the antibiotic resistance in Helicobacter pylori: A literature review. Antibiotics, 10: 1–15.
]Search in Google Scholar
[
Sashital D.G. (2018). Pathogen detection in the CRISPR–Cas era. Genome Med., 10: 32.
]Search in Google Scholar
[
Saxena S., Punjabi K., Ahamad N., Singh S., Bendale P., Banerjee R. (2022). Nanotechnology approaches for rapid detection and theranostics of antimicrobial resistant bacterial infections. ACS Bio-mater. Sci. Eng., 8: 2232–2257.
]Search in Google Scholar
[
Schrader S.M., Vaubourgeix J., Nathan C. (2020). Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med., 12: eaaz6992.
]Search in Google Scholar
[
Schuts E.C., Hulscher M.E.J.L., Mouton J.W., Verduin C.M., Stuart J.W.T.C., Overdiek H.W.P.M., van der Linden P.D., Natsch S., Hertogh C.M.P.M., Wolfs T.F.W., Schouten J.A., Kullberg B.J., Prins J.M. (2016). Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect. Dis., 16: 847–856.
]Search in Google Scholar
[
Schwartz D.J., Langdon A.E., Dantas G. (2020). Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med., 12: 82.
]Search in Google Scholar
[
Shang Y., Sun J., Ye Y., Zhang J., Zhang Y., Sun X. (2020). Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit. Rev. Food Sci. Nutr., 60: 201–224.
]Search in Google Scholar
[
Sharma S., Kaushik V., Kulshrestha M., Tiwari V. (2023). Different efflux pump systems in Acinetobacter baumannii and their role in multidrug resistance. Adv. Microbiol. Infect. Dis. Public Heal., 17: 155–168.
]Search in Google Scholar
[
Singh V., Kasana E., Batra J., Saxena R. (2022). Antimicrobial resistance: mechanisms, screening techniques and biosensors. J. Pharm. Negat. Results., 13: 1724–1735.
]Search in Google Scholar
[
Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol., 6: 144398.
]Search in Google Scholar
[
Smith T.C., Gebreyes W.A., Abley M.J., Harper A.L., Forshey B.M., Male M.J., Martin H.W., Molla B.Z., Sreevatsan S., Thakur S., Thiruvengadam M., Davies P.R. (2013). Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS One, 8: 1–5.
]Search in Google Scholar
[
Sohail M., Rashid A., Aslam B., Waseem M., Shahid M., Akram M., Khurshid M., Rasool M.H. (2016). Antimicrobial susceptibility of Acinetobacter clinical isolates and emerging antibiogram trends for nosocomial infection management. Rev. Soc. Bras. Med. Trop., 49: 300–304.
]Search in Google Scholar
[
Spellberg B., Powers J.H., Brass E.P., Miller L.G., Edwards J.E. (2004). Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis., 38: 1279–1286.
]Search in Google Scholar
[
Stalder T., Barraud O., Casellas M., Dagot C., Ploy M.-C. (2012). Integron involvement in environmental spread of antibiotic resistance. Front. Microbiol., 3: 119.
]Search in Google Scholar
[
Su M., Satola S.W., Read T.D. (2019). Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol., 57: 10–1128.
]Search in Google Scholar
[
Sulis G., Sayood S., Gandra S. (2022). Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert. Rev. Anti. Infect. Ther., 20: 147–160.
]Search in Google Scholar
[
Tao S., Hu C., Fang Y., Zhang H., Xu Y., Zheng L., Chen L., Liang W. (2023). Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system. BMC Microbiol., 23: 380.
]Search in Google Scholar
[
Teng J., Imani S., Zhou A., Zhao Y., Du L., Deng S., Li J., Wang Q. (2023). Combatting resistance: understanding multi-drug resistant pathogens in intensive care units. Biomed. Pharmacother., 167: 115564.
]Search in Google Scholar
[
Thomasen A., Bredahl C.L.G., Welsh C.M., Kjærgaard J., Hansson H., Poulsen A. (2023). The experiences of children, adolescents and their parents in isolation in a Danish paediatric unit: A qualitative study. J. Pediatr. Nurs., 72: 121–128.
]Search in Google Scholar
[
Tooke C.L., Hinchliffe P., Bragginton E.C., Colenso C.K., Hirvonen V.H.A., Takebayashi Y., Spencer J. (2019). β-Lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol., 431: 3472–3500.
]Search in Google Scholar
[
Uddin T.M., Chakraborty A.J., Khusro A., Zidan B.R.M., Mitra S., Emran T. Bin, Dhama K., Ripon M.K.H., Gajdács M., Sahibzada M.U.K., Hossain M.J., Koirala N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health., 14: 1750–1766.
]Search in Google Scholar
[
Uelze L., Grützke J., Borowiak M., Hammerl J.A., Juraschek K., Deneke C., Tausch S.H., Malorny B. (2020). Typing methods based on whole genome sequencing data. One Heal. Outlook, 2: 1–19.
]Search in Google Scholar
[
Vaghari-Tabari M., Hassanpour P., Sadeghsoltani F., Malakoti F., Alemi F., Qujeq D., Asemi Z., Yousefi B. (2022). CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell. Mol. Biol. Lett., 27: 49.
]Search in Google Scholar
[
Van Gompel L., Luiken R.E.C., Sarrazin S., Munk P., Knudsen B.E., Hansen R.B., Bossers A., Aarestrup F.M., Dewulf J., Wagenaar J.A., Mevius D.J., Schmitt H., Heederik D.J.J., Dorado-García A., Smit L.A.M. (2019). The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. J. Antimicrob. Chemother., 74: 865–876.
]Search in Google Scholar
[
Ventola C.L. (2015 a). The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther., 40: 277.
]Search in Google Scholar
[
Ventola C.L. (2015 b). The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm. Ther., 40: 344–352.
]Search in Google Scholar
[
Vrioni G., Tsiamis C., Oikonomidis G., Theodoridou K., Kapsimali V., Tsakris A. (2018). MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Ann. Transl. Med., 6: 240–240.
]Search in Google Scholar
[
Wang Q., Wei S., Silva A.F., Madsen J.S. (2023). Cooperative antibiotic resistance facilitates horizontal gene transfer. ISME J., 17: 846–854.
]Search in Google Scholar
[
Wang Y., Alocilja E.C. (2015). Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng., 9: 1–7.
]Search in Google Scholar
[
Wang Y., Li H., Wang Y., Zhang L., Xu J., Ye C. (2017). Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front. Microbiol., 8: 192.
]Search in Google Scholar
[
Weinstein R.A. (2001). Controlling antimicrobial resistance in hospitals: Infection control and use of antibiotics. Emerg. Infect Dis., 7: 188–192.
]Search in Google Scholar
[
Welch E.C., Powell J.M., Clevinger T.B., Fairman A.E., Shukla A. (2021). Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv. Funct. Mater., 31: 2104126.
]Search in Google Scholar
[
Welker M., van Belkum A. (2019). One system for all: is mass spec-trometry a future alternative for conventional antibiotic susceptibility testing? Front. Microbiol., 10: 491958.
]Search in Google Scholar
[
Wen X., Gehring R., Stallbaumer A., Riviere J.E., Volkova V.V. (2016). Limitations of MIC as sole metric of pharmacodynamic response across the range of antimicrobial susceptibilities within a single bacterial species. Sci. Rep., 6: 37907.
]Search in Google Scholar
[
Wong A., Plasek J.M., Montecalvo S.P., Zhou L. (2018). Natural language processing and its implications for the future of medication safety: a narrative review of recent advances and challenges. Pharmacother. J. Hum. Pharmacol. Drug Ther., 38: 822–841.
]Search in Google Scholar
[
World Health Organization (2016). Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/9789241509763.
]Search in Google Scholar
[
World Health Organization (2020). Neglected tropical diseases and One Health: gearing up against antimicrobial resistance to secure the safety of future generations. https://www.who.int/news/item/05-11-2020-neglected-tropical-diseases-and-one-health-gearing-up-against-antimicrobial-resistance-to-secure-the-safety-of-future-generations.
]Search in Google Scholar
[
World Health Organization (2022). Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. https://www.who.int/publications/i/item/9789240047419.
]Search in Google Scholar
[
Wu Y., Battalapalli D., Hakeem M.J., Selamneni V., Zhang P., Draz M.S., Ruan Z. (2021). Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J. Nanobiotechnol., 19: 1–26.
]Search in Google Scholar
[
Yamin D., Uskoković V., Wakil A.M., Goni M.D., Shamsuddin S.H., Mustafa F.H., Alfouzan W.A., Alissa M., Alshengeti A., Almaghrabi R.H., Fares M.A.A., Garout M., Al Kaabi N.A., Alshehri A.A., Ali H.M., Rabaan A.A., Aldubisi F.A., Yean C.Y., Yusof N.Y. (2023). Current and future technologies for the detection of antibiotic-resistant bacteria. Diagnostics, 13: 1–43.
]Search in Google Scholar
[
Yang D., Zhou H., Haisch C., Niessner R., Ying Y. (2016). Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 146: 457–463.
]Search in Google Scholar
[
Yin C., Alam M.Z., Fallon J.T., Huang W. (2024). Advances in development of novel therapeutic strategies against multi-drug resistant Pseudomonas aeruginosa. Antibiotics, 13: 119.
]Search in Google Scholar
[
Zabala G.A., Bellingham K., Vidhamaly V., Boupha P., Boutsamay K., Newton P.N., Caillet C. (2022). Substandard and falsified antibiotics: neglected drivers of antimicrobial resistance? BMJ Glob. Heal., 7: e008587.
]Search in Google Scholar
[
Zhao X., Zhang W., Qiu X., Mei Q., Luo Y., Fu W. (2020). Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal. Bioanal. Chem., 412: 601–609.
]Search in Google Scholar