Uneingeschränkter Zugang

Sodium butyrate supplementation in two-level fishmeal diets for rainbow trout (Oncorhynchus mykiss): growth performance, immunological responses, and intestinal investigation


Zitieren

Aalamifar H., Soltanian S., Vazirzadeh A., Akhlaghi M., Morshedi V., Gholamhosseini A., Mozanzadeh MT. (2020). Dietary butyric acid improved growth, digestive enzyme activities, and humoral immune parameters in barramundi (Lates calcarifer). Aquac. Nutr., 26: 156–164. Search in Google Scholar

Abd El-Naby AS., Khattaby AE-RA., Samir F., Awad SMM., Abdel-Tawwab M. (2019). Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Anim. Feed Sci. Technol., 254: 114212. Search in Google Scholar

Abdel-Latif H.M.R., Abdel-Tawwab M., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: a review. Rev. Fish. Sci. Aquac., 28: 421–448. Search in Google Scholar

Abdel-Latif H.M., Hendam B.M., Shukry M., El-Shafai N.M., El-Mehasseb I.M., Dawood M.A.O., Abdel-Tawwab M. (2021). Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in Oreochromis niloticus. Fish Shellfish Immunol., 119: 516–523. Search in Google Scholar

Abdel-Mohsen H.H., Wassef E.A., El-Bermawy N.M., Abdel-Meguid N.E., Saleh N.E., Barakat K.M., Shaltout O.E. (2018). Advantageous effects of dietary butyrate on growth, immunity response, intestinal microbiota and histomorphology of European Seabass (Dicentrarchus labrax) fry. EJABF, 22: 93–110. Search in Google Scholar

Aebi H. (1984). Catalase in vitro. In: Methods in Enzymology, Packer L. (ed.). New York: Academic, 105: 121–126. Search in Google Scholar

Ahmed H., Sadek K. (2014). Impact of dietary supplementation of sodium butyrate and/or protexin on the growth performance, some blood parameters, and immune response of Oreochromis niloticus. Soc. Anim. Manag., 3: 85–101. Search in Google Scholar

Ai Q., Xu H., Mai K., Xu W., Wang J., Zhang W. (2011). Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture, 317: 155–161. Search in Google Scholar

Al-Thobaiti A., Al-Ghanim K., Ahmed Z., Suliman E.M., Mahboob S. (2017). Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance in Nile tilapia (Oreochromis niloticus L.) diets. Braz. J. Biol., 78: 525–534. Search in Google Scholar

Baruah K., Sahu N.P., Pal A.K., Jain K.K., Debnath D., Mukherjee S.C. (2007). Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juveniles at sub-optimal protein level. Aquac. Res., 38: 109–120. Search in Google Scholar

Bedford A., Gong J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr., 4: 151–159. Search in Google Scholar

Beheshtipour J., Raeeszadeh M. (2020). Evaluation of interleukin-10 and pro-inflammatory cytokine profile in calves naturally infected with neonatal calf diarrhea syndrome. Arch. Razi Inst., 75: 213–218. Search in Google Scholar

Bernfeld P. (1955). Amylase. In: Methods in Enzymology, Colowick S.P., Kaplan N.O. (eds). Academic Press, New York, pp. 149–158. Search in Google Scholar

Betiku O.C., Barrows F.T., Ross C., Sealey W.M. (2016). The effect of total replacement of fish oil with DHA-Gold® and plant oils on growth and fillet quality of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Aquac. Nutr., 22: 158–169. Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding. Anal. Biochem., 72: 248–254. Search in Google Scholar

Bruni L., Randazzo B., Cardinaletti G., Zarantoniello M., Mina F., Secci G., Tulli F., Olivotto I., Parisi G. (2020). Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture, 529: 735678. Search in Google Scholar

Cai W.C., Jiang G.Z., Li X.F., Sun C.X., Mi H.F., Liu S.Q., Liu W.B. (2018). Effects of complete fish meal replacement by rice protein concentrate with or without lysine supplement on growth performance, muscle development and flesh quality of blunt snout bream (Megalobrama amblycephala). Aquac. Nutr., 24: 481–491. Search in Google Scholar

Cao H., Yu R., Zhang Y., Hu B., Jian S., Wen C., Kajbaf K., Kumar V., Yang G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508: 106–112. Search in Google Scholar

Castillo S., Rosales M., Pohlenz C., Gatlin III D.M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433: 6–12. Search in Google Scholar

Chen W., Chang K., Chen J., Zhao X., Gao S. (2021). Dietary sodium butyrate supplementation attenuates intestinal inflammatory response and improves gut microbiota composition in largemouth bass (Micropterus salmoides) fed with a high soybean meal diet. Fish Physiol. Biochem., 47: 1805–1819. Search in Google Scholar

Chen W., Gao S., Chang K., Zhao X., Niu B. (2023). Dietary sodium butyrate supplementation improves fish growth, intestinal microbiota composition, and liver health in largemouth bass (Micropterus salmoides) fed high-fat diets. Aquaculture, 564: 739040. Search in Google Scholar

Cheng J.H., Sun D.W., Han Z., Zeng X.A. (2014). Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Compr. Rev. Food Sci. F., 13: 52–61. Search in Google Scholar

Chiquieri J., Soares R.T.R.N., Lyra M.S., Hurtado Nery V.L., Fonseca J.B. (2009). Ácidos orgânicos na alimentação de leitões desmamados. Arch. Zootec., Córdoba, 58: 610–616. Search in Google Scholar

Chong A.S.C., Hashim R., Chow-Yang L., Ali A.B. (2002). Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203: 321–333. Search in Google Scholar

da Silva B.C., Vieira F.D.N., Mouriño J.L.P., Ferreira G.S., Seiffert W.Q. (2013). Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture, 384–387: 104–110. Search in Google Scholar

da Silva B.C., Vieira F.D.N., Mouriño J.L.P., Bolivar N., Seiffert W.Q. (2016). Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquac. Res., 47: 612–623. Search in Google Scholar

Dawood M.A.O., Eweedah N.M., Elbialy Z.I., Abdelhamid A.I. (2020). Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J. Therm. Biol., 88: 102500. Search in Google Scholar

Dibner J., Buttin P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poult. Res., 11: 453–463. Search in Google Scholar

Diebold G., Eidelsburger U. (2006). Acidification of diets as an alternative to antibiotic growth promoters. In: Antimicrobial Growth Promoters, Barug D., de Jong J., Kies A.K., Verstegen M.W.A (eds). The Netherlands: Wageningen Academic Publishers, pp. 311–327. Search in Google Scholar

El Far S.A., Khalil R.H., Saad T.T., El-Tanekhy M., Abdel-Latif H.M. (2015). Occurrence, characterization and antibiotic resistance patterns of bacterial communities encountered in mass kills of pond cultured Indian prawn (Fenneropenaeus indicus) at Damietta governorate, Egypt. Int. J. Fish. Aquat. Stud., 2: 271–276. Search in Google Scholar

Ellis J.A. (2001). The immunology of the bovine respiratory disease complex. Vet. Clin. North. Am. Food. Anim. Pract., 17: 535–537. Search in Google Scholar

El-Sayed Ali T., El-Sayed A.M., Eissa M.AR., Hanafi H.M. (2018). Effects of dietary Biogen and sodium butyrate on hematological parameters, immune response, and histological characteristics of Nile tilapia (Oreochromis niloticus) fingerlings. Aquacult. Int., 26: 139–150. Search in Google Scholar

Estruch G., Collado M.C., Monge-Ortiz R., Tomás-Vidal A., Jover-Cerdá M., Peñaranda D.S., Pérez Martínez G., Martínez-Llorens S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Vet. Res., 14: 302. Search in Google Scholar

Fang L., Wang Q., Guo X., Pan X., Li X. (2021). Effects of dietary sodium butyrate on growth performance, antioxidant capacity, intestinal histomorphology and immune response in juvenile Pengze crucian carp (Carassius auratus Pengze). Aquac. Rep., 21: 100828. Search in Google Scholar

Francis G., Makkar H.P.S., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227. Search in Google Scholar

Freitag M. (2007). Organic acids and salts promote performance and health in animal husbandry. In: Acidifiers in animal nutrition: a guide for feed preservation and acidification to promote animal performance, Luckstadt C. (ed.). Nottingham, UK: Nottingham University Press, pp. 131–139. Search in Google Scholar

Gao Y., Storebakken T., Shearer K.D., Penn M., Øverland M. (2011). Supplementation of fishmeal and plant protein based diets for rainbow trout with a mixture of sodium formate and butyrate. Aquaculture, 311: 233–240. Search in Google Scholar

Garcia-Carreno F.L., Haard N.F. (1993). Characterization of proteinase classes in langostilla Pleuroncodes planipes and crayfish Pacifastacus astacus extracts. J. Food. Biochem., 17: 97–113. Search in Google Scholar

Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J. (2008). Review article: the role of butyrate on colonic function. Aliment Pharmacol. Ther., 27: 104–119. Search in Google Scholar

Hoseinifar S.H., Sun Y.Z., Caipang C.M. (2017). Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac. Res., 48: 1380–1391. Search in Google Scholar

Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt activated lipase from hepatopancreas of red sea bream Pagrus major. Fish Physiol. Biochem., 18: 59–69. Search in Google Scholar

Iwashita T., Yasuda I., Doi S., Kato T., Sano K., Yasuda S., Nakashima M., Hirose Y., Takaimi T., Moriwaki H. (2008). The yield of endoscopic ultrasound-guided fine needle aspiration for histological diagnosis in patients suspected of stage I sarcoidosis. Endoscopy, 40: 400–405. Search in Google Scholar

Jesus G.F.A., Pereira S.A., Owatari M.S., Syracuse N., Silva B.C., Silva A., Pierri B.S., Lehmann N.B., Figueiredo H.C.P., Fracalossi D.M., Mouriño J.L.P., Martins M.L. (2019). Protected forms of sodium butyrate improve the growth and health of Nile tilapia fingerlings during sexual reversion. Aquaculture, 499: 119–127. Search in Google Scholar

Jesus G.F.A., Owatari M.S., Pereira S.A., Silva B.C., Syracuse N.M., Lopes G.R., Addam K., Cardoso L., Mouriño J.L.P., Martins M.L. (2021). Effects of sodium butyrate and Lippia origanoides essential oil blend on growth, intestinal microbiota, histology, and haemato-immunological response of Nile tilapia. Fish Shellfish Immunol.,117: 62–69. Search in Google Scholar

Khajepour F., Hosseini S.A. (2012). Citric acid improves growth performance and phosphorus digestibility in beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Anim. Feed Sci. Tech., 171: 68–73. Search in Google Scholar

Kiron V. (2012). Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Tech., 173: 111–133. Search in Google Scholar

Kong Y., Li M., Chu G., Liu H., Shan X., Wang G., Han G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531: 735852. Search in Google Scholar

Lange S., Gudmundsdottir B.K., Magnadottir B. (2001). Humoral immune parameters of cultured Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol., 11: 523–535. Search in Google Scholar

Li M., Zhang M., Ma Y., Ye R., Wang M., Chen H., Xie D., Dong Y., Ning L., You C., Wang S. (2020). Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus. Aquaculture, 516: 734632. Search in Google Scholar

Lin Y-H, Cheng M-Y. (2017). Effects of dietary organic acid supplementation on the growth, nutrient digestibility and intestinal histology of the giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquaculture, 469: 106–111. Search in Google Scholar

Lin X., Zhang C., Cao K., Li Z., Zhao Z., Li X., Leng X. (2023). Dietary sodium butyrate changed intestinal histology and microbiota of rainbow trout (Oncorhynchus mykiss), but did not promote growth and nutrient utilization. Aquac. Nutr., 2023: 3706109. Search in Google Scholar

Liu M., Guo W., Wu F., Qu Q., Tan Q., Gong W. (2017). Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Aquac. Res., 48: 4102–4111. Search in Google Scholar

Liu S., Zhang S., Wang Y., Lu S., Han S., Liu Y., Jiang, H., Wang C.A., Liu H. (2023). Dietary sodium butyrate improves intestinal health of triploid Oncorhynchus mykiss fed a low fish meal diet. Biology, 12: 145. Search in Google Scholar

Liu X.W., Feng L., Jiang W.D., Wu P., Jiang J., Yang D.M., Tang L., Kuang S.Y., Shi H.Q., Zhou X.Q., Liu Y. (2020). (2-Carboxyethyl) dimethylsulfonium bromide (Br-DMPT) improves muscle flesh quality and antioxidant status of on-growing grass carp (Ctenopharyngodon idella) fed non-fish meal diets. Aquaculture, 521: 735065. Search in Google Scholar

Liu Y., Chen Z., Dai J., Yang P., Mai K. (2018). The protective role of glutamine on enteropathy induced by high dose of soybean meal in turbot, Scophthalmus maximus L. Aquaculture, 497: 510–519. Search in Google Scholar

Liu Y., Chen Z., Dai J., Yang P., Xu W., Ai Q., Zhang W., Zhang Y., Zhang Y., Mai K. (2019). Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): effects on inflammatory status, mucosal barriers and microbiota in the intestine. Fish Shellfish Immunol., 88: 65–75. Search in Google Scholar

Liu Z., Zhou Y., Liu S., Zhao Q., Feng J., Lu S., Xiong G., Xie D., Zhang J., Liu Y. (2014). Characterization and dietary regulation of oligopeptide transporter (PepT1) in different ploidy fishes. Peptides, 52: 149–156. Search in Google Scholar

Luz J.R., Ramos A.P.S., Melo J.F.B., Braga L.G.T. (2019). Use of sodium butyrate in the feeding of Arapaima gigas (Schinz, 1822) juvenile. Aquaculture, 510: 248–255. Search in Google Scholar

Magnadottir B. (2010). Immunological control of fish diseases. J. Mar. Biotechnol., 12: 361–379. Search in Google Scholar

Mehrgan M.S., Shekarabi S.P.H., Azari A., Yilmaz S., Lückstädt C., Islami H.R. (2022). Synergistic effects of sodium butyrate and sodium propionate on the growth performance, blood biochemistry, immunity, and immune-related gene expression of goldfish (Carassius auratus). Aquacult. Int., 30: 3179–3193. Search in Google Scholar

Metwally M.A., Ali S., Khatab I., El-Sayed M.K. (2020). Antibacterial potential of some seaweeds species to combat biofilm-producing multi-drug resistant Staphylococcus aureus of Nile tilapia. EJBO, 60: 9–24. Search in Google Scholar

Mirghaed A.T, Ghelichpour M., Hoseini S.M., Amini K. (2017). Hemolysis interference in measuring fish plasma biochemical indicators. Fish Physiol. Biochem., 34: 1143–1151. Search in Google Scholar

Mirghaed A.T., Yarahmadi P., Soltani M., Paknejad H., Hoseini S.M. (2019). Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 92: 621–628. Search in Google Scholar

Morken T., Kraugerud O., Sørensen M., Storebakken T., Hillestad M., Christiansen R., Øverland M. (2012). Effects of feed processing conditions and acid salts on nutrient digestibility and physical quality of soy-based diets for Atlantic salmon (Salmo salar). Aquacult. Nutr., 18: 21–34. Search in Google Scholar

Morshedi V., Nafisi Bahabadi M., Sotoudeh E., Azodi M., Hafezieh M. (2018). Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). J. Appl. Phycol., 30: 619–628. Search in Google Scholar

Najdegerami E.H., Baruah K., Shiri A., Rekecki A., Van den Broeck W., Sorgeloos P., De Schryver P. (2015). Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly- β-hydroxybutyrate (PHB): Effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquac. Res., 46: 801–812. Search in Google Scholar

Ng W.K., Koh C.B. (2017). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquacult., 9: 342–368. Search in Google Scholar

Ng W.K., Koh C.B., Sudesh K., Siti Zahrah A. (2009). Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquacult. Res., 40: 1490–1500. Search in Google Scholar

Paryab M., Raeeszadeh M. (2017). The study of the rate and reasons of medical herb use by the patients visiting the specialized treatment centers in Fars province in 2014. J. Commun. Health., 2: 62–71. Search in Google Scholar

Piazzon M.C., Calduch-Giner J.A., Fouz B., Estensoro I., Simo-Mirabet P., Puyalto M., Karalazos V., Palenzuela O., Sitja-Bobadilla A., Perez-Sanchez J. (2017). Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 5: 164. Search in Google Scholar

Poopak H., Raeeszadeh M., Salimi B. (2023). Accumulation of heavy metals in meat and their relationship with water and food intake of aquatic animals in Kermanshah, western Iran. Int. J. Environ. Health Res., 1–13. Search in Google Scholar

Raeeszadeh M., Javanshir Khoei A., Parhizkar S., Tavakoli Rad F. (2022). Assessment of some heavy metals and their relationship with oxidative stress and immunological parameters in aquatic animal species. Biol. Trace Elem. Res., 201: 4547–4557. Search in Google Scholar

Rimoldi S., Finzi G., Ceccotti C., Girardello R., Grimaldi A., Ascione C., Terova G. (2016). Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fish Aquat. Sci., 19: 40. Search in Google Scholar

Robles R., Lozano A., Sevilla A., Marquez L., Nuez-Ortin W., Moyano F. (2013). Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata). Fish Physiol. Biochem., 39: 1567–1580. Search in Google Scholar

Sahin T., Yılmaz S., Yazıcı İ.S., Berber S. (2021). The effects of dietary poly-β-hydroxybutyrate on growth parameters, intestinal microflora, and histopathology of rainbow trout, Oncorhynchus mykiss, fingerlings. JWAS, 52: 73–87. Search in Google Scholar

Sahu S., Das B.K., Mishra B.K., Pradhan J., Samal S.K., Sarangi N. (2008). Effect of dietary Curcuma longa on enzymatic and immunological profiles of rohu, Labeo rohita (Ham.), infected with Aeromonas hydrophila. Aquac. Res., 39: 1720–1730. Search in Google Scholar

Schley P., Field C. (2002). The immune-enhancing effects of dietary fibres and prebiotics, Br. J. Nutr., 87: S221–S230. Search in Google Scholar

Shalata H.A., Bahattab O., Zayed M.M., Farrag F., Salah A.S., Al-Awthan Y.S., Ebied N.A., Mohamed R.A. (2021). Synergistic effects of dietary sodium butyrate and Spirulina platensis on growth performance, carcass composition, blood health, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). Aquac. Rep., 19: 100637. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L., (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Subramanian S., Ross N.W., Mackinnon S.L. (2008). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 150: 85–92. Search in Google Scholar

Sunde J., Taranger G.L., Rungruangsak-Torrissen K. (2001). Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). J. Fish Physiol. Biochem., 25: 335–345. Search in Google Scholar

Tang X., Tang J., Zhou Y., Qu F., Zou J., Xiao T., Liu Z. (2021). Effects of sodium butyrate stimulation on immune-related mRNA-miRNA network in intestine of grass carp. Aquac. Res., 52: 309–322. Search in Google Scholar

Tian L., Zhou X-Q., Jiang W-D., Liu Y., Wu P., Jiang J., Kuang S-Y., Tang L., Tang W-N., Zhang Y-A., Xie F., Feng L. (2017). Sodium butyrate improved intestinal immune function associated with NF-jB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 66: 548–563. Search in Google Scholar

Tocher D. (2003). Metabolism and functions of lipid and fatty acid in teleost fish. Rev. Fish. Sci. Aquacult., 11: 107–184. Search in Google Scholar

Uran P.A., Schrama J.W., Rombout J.H.W.M., Obach A., Jen-sen L., Koppe W., Verreth J.A.J. (2008). Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at differenttemperatures. Aquacult. Nutr., 14: 324–330. Search in Google Scholar

Uran P.A., Schrama J.W., Jaafari S., Baardsen G., Rombout J., Koppe W., Verreth J.A.J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salar L.). Aquacult. Nutr., 15: 492–499. Search in Google Scholar

Viola E.S., Vieira S.L. (2007). Suplementação de acidificantes orgânicos e inorgânicos em dietas para della de corte: desempenho zootécnico e morfologia intestinal. Rev. Bras. Zootec., 36: 1097–1104. Search in Google Scholar

Wang K., Bao Y., Wang Y., Chen D., Zhou P. (2020). Effects of stepwise steaming treatments at different temperatures on the eating quality of fish: A case study of large-mouth bass (Micropterus salmoides). LWT, 132: 109844. Search in Google Scholar

Wang L., Wu L., Liu Q., Zhang D.F., Yin J.J., Xu Z., Zhang X.Z. (2018). Improvement of flesh quality in rainbow trout (Oncorhynchus mykiss) fed supranutritional dietary selenium yeast is associated with the inhibited muscle protein degradation. Aquac. Nutr., 24: 1351–1360. Search in Google Scholar

Weber T.E., Kerr B.J. (2008). Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs. J. Anim. Sci., 86: 442–450. Search in Google Scholar

Wen Z.S., Lu J.J., Zou X.T. (2012). Effects of sodium butyrate on the intestinal morphology and DNA-binding activity of intestinal nuclear factor-κB in weanling pigs. J. Anim. Vet. Adv., 11: 814–821. Search in Google Scholar

Wu F. (2017). Effects of dietary gamma aminobutyric acid and sodium butyrate on growth performance, antioxidant status and intestinal structure of grass carp (Ctenopharyngodon idellus). Master Thesis, China. https://www.globethesis.com/?t=2283330485477694 Search in Google Scholar

Wu H.X., Li W.J., Shan C.J., Zhang Z.Y., Lv H.B., Qiao F., Du Z.Y., Zhang M.L. (2021). Oligosaccharides improve the flesh quality and nutrition value of Nile tilapia fed with high carbohydrate diet. Food Chem. Mol. Sci., 3: 100040. Search in Google Scholar

Wu P., Tian L., Zhou X.-Q., Jiang W.-D., Liu Y., Jiang J., Xie F., Kuang S.-Y., Tang L., Tang W.-N., Yang J., Zhang Y.-A., Shi H.- Q., Feng L. (2018). Sodium butyrate enhanced physical barrier function referring to Nrf2, JNK and MLCK signaling pathways in the intestine of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 73: 121–132. Search in Google Scholar

Wu X., Wang L., Xie Q., Tan P. (2020). Effects of dietary sodium butyrate on growth, diet conversion, body chemical compositions and distal intestinal health in yellow drum (Nibea albiflora, Richardson). Aquac Res., 51: 69–79. Search in Google Scholar

Xun E., Zhou C., Huang X., Huang Z., Yu W., Yang Y., Li T., Huang J., Wu Y., Lin H. (2022). Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus). Aquacult. Nutr., 9074549. Search in Google Scholar

Yano T. (1992). Assays of hemolytic complement activity. In: Techniques in fish immunology, Stolen J.S., Fletcher T.C., Anderson D.P., Kaattari S.L., Rowley A.F. (eds). SOS Publication, Fair Haven, pp. 131–142. Search in Google Scholar

Yarahmadi P., Miandare H.K., Fayaz S., Caipang C.M.A. (2016). Increased stocking density causes changes in expression of selected stress-and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 48: 43–53. Search in Google Scholar

Yun Y., Song D., He Z., Mi J., Wang L., Nie G. (2022). Effects of methionine supplementation in plant protein based diet on growth performance and fillet quality of juveniles Yellow River carp (Cyprinus carpio haematopterus). Aquaculture, 549: 737810. Search in Google Scholar

Zare R., Abedian Kenari A., Yazdani Sadati M. (2021). Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquac. Int., 29: 891–910. Search in Google Scholar

Zhang C.X., Rahimnejad S., Wang Y.R., Lu K.L., Song K., Wang L., Mai K.S. (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483: 173–182. Search in Google Scholar

Zhang H., Yi L., Sun R., Zhou H., Xu W., Zhang W., Mai K. (2016). Effects of dietary citric acid on growth performance, mineral status and intestinal digestive enzyme activities of large yellow croaker Larimichthys crocea (Richardson, 1846) fed high plant protein diets. Aquaculture, 453: 147–153. Search in Google Scholar

Zhang J., Zhong L., Chi S., Chu W., Liu Y., Hu Y. (2020). Sodium butyrate supplementation in high-soybean meal diets for juvenile rice field eel (Monopterus albus): Effects on growth, immune response and intestinal health. Aquaculture, 520: 734952. Search in Google Scholar

Zhao H., Peng K., Wang G., Mo W., Huang Y., Cao J. (2021). Metabolic changes, antioxidant status, immune response and resistance to ammonia stress in juvenile yellow catfish (Pelteobagrus fulvidraco) fed diet supplemented with sodium butyrate. Aquaculture, 536: 736441. Search in Google Scholar

Zhou C., Lin H., Huang Z., Wang J., Wang Y., Yu W. (2021). Effects of dietary zinc levels on growth performance, digestive enzyme activities, plasma physiological response, hepatic antioxidant responses and metallothionein gene expression in juvenile spotted sea bass (Lateolabrax maculatus). Aquac. Nutr., 27: 1421–1432. Search in Google Scholar

Zhou J.S., Guo P., Yu H.B., Ji H., Lai Z.W., Chen Y.A. (2019). Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate. Fish Physiol. Biochem., 45: 287–298. Search in Google Scholar

Zhu Y., Qiu X., Ding Q., Duan M., Wang C. (2014). Combined effects of dietary phytase and organic acid on growth and phosphorus utilization of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture, 430: 1–8. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin