Zitieren

Abbaszadeh A., Mozanzadeh M.T., Qasemi A., Oujifard, A., Nafisi B.M. (2022). Effects of the addition of Calanopia elliptica, Artemia franciscana, and Brachionus rotundiformis in a nursery biofloc system on water quality, growth, gut morphology, health indices, and transcriptional response of immune and antioxidant related genes in Penaeus vannamei. Aquac. Int., 30: 653–676. Search in Google Scholar

Adams A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunol., 90: 210–214. Search in Google Scholar

Aflalo E.D., Hoang T.T.T., Nguyen V.H., Lam Q., Nguyen D.M., Trinh Q.S., Raviv S., Sagi A. (2006). A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 256: 468–78. Search in Google Scholar

Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol., 45: 733–741. Search in Google Scholar

Alexander K.A., Hughes A.D. (2017). A problem shared: technology transfer and development in European integrated multitrophic aquaculture (IMTA). Aquaculture, 473: 13–19. Search in Google Scholar

Al-Qazzaz M.F., Ismail D., Akit H., Idris L.H. (2016). Effect of using insect larvae meal as a complete protein source on quality. Rev. Bras. de Zootec., 45: 518–523. Search in Google Scholar

Assefa A., Abunna F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int., 5432497. Search in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147. Search in Google Scholar

Azhar M.H., Suciyono S., Budi D.S., Ulkhaq M.F., Anugrahwati M., Ekasari J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and red claw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquacult. Int., 28: 1293–1304. Search in Google Scholar

Barange M., Bahri T., Beveridge M.C.M., Cochrane K.L., Funge-Smith S., Poulain F. (2018). Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. Rome: FAO. FAO Fisheries and Aquaculture Tech. Paper No. 627: 628. Search in Google Scholar

Barragan-Fonseca K.B., Dicke M., Van Loon J.J. (2017). Nutritional value of the BSF (Hermetia illucens L.) and its suitability as animal feed – a review. J. Insects Food Feed, 3: 105–120. Search in Google Scholar

Barrington K., Chopi T., Robinson S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integrated mariculture: a global review. FAO Fisheries Aquaculture Tech. Paper., 529: 7–46. Search in Google Scholar

Barroso F., De Haro C., Sanchez-Muros M., Venegas E., Martinez-Sanchez A., Perez-Banon C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422–423: 193–201. Search in Google Scholar

Bartley D.M., Rana K., Immink A.J. (2000). The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol Fish., 10: 325–337. Search in Google Scholar

Belghi I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbo R., Krogdahl A., Lock E.J. (2019). Black soldier fly larvae meal can replace fish meal in diets of seawater phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619. Search in Google Scholar

Bergqvist J., Gunnarsson S. (2011). Finfish aquaculture: animal welfare, the environment, and ethical implications. J. Agric. Environ. Ethics., 26: 75–99. Search in Google Scholar

Catalani K.M. (2020). Aquamimicry system: Technological alternative for intensive cultivation of marine shrimp Litopenaeus vannamei. A comparison with the Biofloc system (BFT). Thesis for master’s degree in aquaculture. Federal University of Rio Grande, Brazil, 58. Search in Google Scholar

Che Hashim N.F.C., Manan H.., Okomoda V.T., Ikhwanuddin M., Khor W., Abdullah S.R.S.A., Kasan N.A. (2021). Inoculation of bioflocculant-producing bacteria for enhanced biofloc formation and pond preparation: Effect on water quality and bacterial community. Aquac. Res., 53: 1602–1607. Search in Google Scholar

Chopin T., Robinson S.M.C., Troell M., Neori A., Buschmann A.H., Fang J. (2008). Multitrophic integration for sustainable marine aquaculture. In: Ecological Engineering, Vol. 3 of Encyclopedia of Ecology, Jørgensen S.E., Fath B.D. (eds). Elsevier, Oxford, pp. 2463–2475. Search in Google Scholar

Clarke J.L., Waheed M.T., Lössl A.G. (2013). How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol. Biol., 83: 33–40. Search in Google Scholar

Cubillo A.M., Ferreira J.G., Robinson S.M., Pearce C.M., Corner R.A., Johansen J. (2016). Role of deposit feeders in integrated multi-trophic aquaculture – a model analysis. Aquaculture, 453: 54–66. Search in Google Scholar

Das S.K., Mandal A. (2021). Environmental amelioration in biofloc based rearing system of white leg shrimp (Litopenaeus vannamei) in West Bengal, India. Aquat. Living Res., 34: 1–12. Search in Google Scholar

Deepak A.P., Vasava R.J., Elchelwar V.R., Tandel D.H., Vadher K.H., Shrivastava V., Prabhakar P. (2020). Aquamimicry: New and innovative approach for sustainable development of aquaculture. J. Entomol. Zool. Stud., 8: 1029–1031. Search in Google Scholar

DFO (2013). Review of the organic extractive component of integrated multi-trophic aquaculture (IMTA) in Southwest New Brunswick with emphasis on the blue mussel. 2013: 56. Search in Google Scholar

Dietz C., Liebert F. (2018). Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus). Aquac. Rep., 12: 43–48. Search in Google Scholar

Dimitroglou A., Merrifield D.L., Carnevali O., Picchietti S., Avella M.A., Daniels C.L., Güroy D., Davies S. (2011). Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish Shellfish Immunol., 30: 1–16. Search in Google Scholar

Duan J., Cui R., Huang Y., Ai X., Hao Y., Shi H., Huang A., Xie Z. (2022). Identification and characterization of four microalgae strains with potential application in the treatment of tail-water for shrimp cultivation. Algal Res., 66: 102790. Search in Google Scholar

Duff D. (1942). The oral immunization of trout against Bacterium Salmonicida. J. Immun., 44: 87–94. Search in Google Scholar

Dupont C., Cousin P., Dupont S. (2018). IoT for aquaculture 4.0 Smart and easy-to-deploy real-time water monitoring with IoT.”2018 Global Internet of Things Summit (GIoTS), 1–5. Search in Google Scholar

Ekasari J., Nugroho U.A., Fatimah N., Angela D., Hastuti Y.P., Pande G.S.J.P., Natrah F.M.I. (2021). Improvement of biofloc quality and growth of Macrobrachium rosenbergii in biofloc systems by Chlorella addition. Aquacult. Int., 29: 2305–2317. Search in Google Scholar

El-Gayar O.F. (2008). The use of information technology in aquaculture management. Aquac. Econ. Manag., 1: 109–128. Search in Google Scholar

El-Sayed A.-F.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev Aquac., 13: 676–705. Search in Google Scholar

Eltink A.T.G.W. (1987). Changes in age- and size distribution and sex ratio during spawning and migration of Western mackerel (Scomber scombrus L.). J. Conseil Intern. l’Exploration de la Mer., 44: 10–22. Search in Google Scholar

FAO (2001). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Search in Google Scholar

FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Food and Agriculture Organization of The United Nations. Search in Google Scholar

FAO/WHO (2001). Expert Consultation Report on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Search in Google Scholar

Felix E., Avwemoya F.E., Abah A. (2019). Some methods of monosex tilapia production: A review. Int J. Fish Aquat. Res., 4: 42–49. Search in Google Scholar

Ferreira J.G., Saurel C., Ferreira J.M. (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 358: 23–34. Search in Google Scholar

Fraser T.W., Fjelldal P.G., Hansen T., Mayer I. (2012). Welfare considerations of triploid fish. Rev. Fish. Sci., 20: 192–211. Search in Google Scholar

Frozza A., Fiorini A., Vendruscolo C.G., Rosado F.R., Konrad D., Rodrigues M.C.G., Ballester E.L.C. (2021). Probiotic in the rearing of freshwater prawn Macrobrachium rosenbergii (de Man, 1879) in a biofloc system. Aquac. Res., 52: 4269–4277. Search in Google Scholar

Fuller R. (1987). A review, probiotics in man and animals. J. Appl. Bacteriol., 66: 365–378. Search in Google Scholar

Gao Z., Wang W., Lu X., Zhu F., Liu W., Wang X., Lei C. (2019). Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod., 230: 974–980. Search in Google Scholar

Ge H.L., Tan K., Shi L.L., Sun R., Wang W.M., Lia Y.H. (2020). Comparison of effects of dsRNA and siRNA RNA interference on insulin-like androgenic gland gene (IAG) in red swamp crayfish Procambarus clarkia. Gene, 752: 144783. Search in Google Scholar

Genc E., Kaya D., Dincer S., Genc M.A., Aktas M. (2019). Biofloc application in narrow-clawed crayfish (Astacus leptodactylus) culture: preliminary results. Proc. 3rd International Congress on Advances in Bioscience and biotechnology (ICABB), Kiev, Ukraine, 10–14.07.2019. Book of Proceeding, pp. 71–78. Search in Google Scholar

Gismondo M.R., Drago L., Lombardi A. (1999). Review of probiotics available to modify gastrointestinal flora. Int. J. Antimicrob. Agents., 12: 287–292. Search in Google Scholar

Goh J.X.H., Tan L.T.H., Law J.W.F., Ser H.L., Khaw K.Y., Letchumanan V., Lee L.H., Goh B.H. (2022). Harnessing the potentialities of probiotics, prebiotics, synbiotics, paraprobiotics, and postbiotics for shrimp farming. Rev. Aquacult., 14: 1478–1557. Search in Google Scholar

Gorshkov S., Gorshkova G., Hadani A., Gordin H., Knibb W. (2002). Chromosome set manipulations and hybridization experiments in gilthead seabream (Sparus aurata). II. Assessment of diploid and triploid hybrids between gilthead seabream and red seabream (Pagrus major). J. Appl. Ichthyol., 18: 106–112. Search in Google Scholar

Granada L., Sousa N., Lopes S., Lemos M.F.L. (2016). Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Rev Aquac., 8: 283–300. Search in Google Scholar

Grosso L., Rakaj A., Fianchini A., Morroni L., Cataudella S., Scardi M. (2021). Integrated multi-trophic aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture, 534: 1–11. Search in Google Scholar

Gudding R., Goodrich T. (2014). The history of fish vaccination. In: Fish Vaccination, Gudding R., Lillehaug A., Evensen O. (eds). 1st ed. John Wiley & Sons, Inc., New York, pp. 1–11. Search in Google Scholar

Guo X., Wang Y., Xu Z., Yang H. (2009). Chromosome set manipulation in shellfish. In: New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management, Burnell G., Allan G. (eds). Woodhead Publishing, Cambridge, UK, pp. 165–194. Search in Google Scholar

Gupta S., Gupta A., Hasija Y. (2022). Chapter 30 – Transforming IoT in Aquaculture: A cloud solution. AI, Edge and IoT-based Smart Agriculture. Intelligent Data-Centric Systems, 2022: 517–531. Search in Google Scholar

Hamid N.A.A, Zakaria N.F., Ali N. (2021). Study on utilization of black soldier fly larvae (Hermetia illucens) as protein substitute in the pellet diet of Clarias gariepenus fingerling. Adv. Agric. Food Res. J., 3: 1–6. Search in Google Scholar

Hargreaves J.A. (2006). Photosynthetic suspended-growth system in aquaculture. Aquac. Eng., 34: 344–363. Search in Google Scholar

Hassan A., Okomoda V.T., Pradeep P.J. (2018). Triploidy induction by electric shock in Red hybrid Tilapia. Aquaculture, 495: 823–830. Search in Google Scholar

Hattori R.S., Yoshinaga T.T., Katayama N., Hattori-Ihara S., Tsukamoto R.Y., Takahashi N. S., Tabata Y.A. (2019). Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture, 506: 238–245. Search in Google Scholar

Hedgecock D., Davis J.P. (2007). Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas. Aquaculture, 272: 17–29. Search in Google Scholar

Herath S.S., Satoh S. (2015). Environmental impact of phosphorus and nitrogen from aquaculture. Feed and Feeding Practices in Aquaculture. Woodhead Publishing, pp. 369–386. Search in Google Scholar

Holanda M., Besold C., Sempere F.L., Abreu P.C., Poersch L. (2021). Treatments of effluents from marine shrimp culture with biofloc technology: Production of Arthrospira (Spirulina) platensis (cyanobacteria) and nutrient removal. J. World Aquac. Soc., 53: 669–680. Search in Google Scholar

Hossain S., Manan H., Shukri Z.N.A., Othman R., Kamaruzzan A.S., Rahim A.I.A., Khatoon H., Mihaz T.M.M., Islam Z., Kasan N.A. (2022). Microplastics biodegradation by biofloc-producing bacteria: an inventive biofloc technology approach. Microbiol Res., 2022: 127239. Search in Google Scholar

Huan J., Li H., Wu F., Cao W. (2020). Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac Eng., 90: 1–10. Search in Google Scholar

Hüssy K., Coad J.O., Farrell E.D., Clausen L.W., Clarke M.W. (2012). Sexual dimorphism in size, age maturation, and growth characteristics of boarfish (Capros aper) in the Northeast Atlantic. ICES J. Marine Sci., 69: 1729–1735. Search in Google Scholar

Irianto A., Austin B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout, Onchorhynchus mykiss (Walbaum). J. Fish Dis., 26: 59–62. Search in Google Scholar

Jakobsen T., Ajiad A. (1999). Management implications of sexual differences in maturation and spawning mortality of Northeast Arctic cod. J. Northwest Atl. Fish. Sci., 25: 125–132. Search in Google Scholar

Jiang G., Li Q., Xu C. (2022). Growth, survival and gonad development of two new types of reciprocal triploid hybrids between Crassostrea gigas and C. angulata. Aquaculture, 559: 738451. Search in Google Scholar

Jiménez M.P., Sobrino I., Ramos F. (1998). Distribution pattern, reproductive biology, and fishery of the wedge sole Dicologlossa cuneata in the Gulf of Cadiz, south-west Spain. Mar Biol., 131: 173–187. Search in Google Scholar

Karimanzira D., Raushenbach T. (2019). Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization. Inf. Process. Agric., 6: 375–385. Search in Google Scholar

Kasan N.A., Yee C.S., Manan H., Ideris A.RA., Kamruzzan A.S., Waiho K., Lam S.S., Mahari W.A.W., Ikhwanuddin M.., Suratman S., Tamrin M.L.M. (2021 a). Study on the implementation of different biofloc sedimentable solids in improving the water quality and survival rate of mud crab, Scylla paramamosain larvae culture. Aquac. Res., 52: 4807–4815. Search in Google Scholar

Kasan N.A., Manan H., Ismail T.I.T., Salam A.I.A., Rahim A.I.A., Kamaruzzan A.S., Ishak A.N., Deraman S., Nasrin Z., Engku Chik C.E.N., Che Hashim N.F., Iber B.T. (2021 b). Effect of biofloc product Rapid BFTTM vs. clear water system in improving the water quality and growth performance of Pacific Whiteleg shrimp, P. vannamei, cultured in indoor aquaculture system. Aquac. Res., 52: 6504–6513. Search in Google Scholar

Kasan N.A., Manan H., Lal M.T.M., Rahim A.I.A., Kamaruzzan A.S., Ishak A.N., Ikhwanuddin M. (2022). A novel study on the effect of rapid biofloc as pellet feed on the survival rate and water quality of mud crab, Scylla olivacea culture. J. Sustain Sci. Manag., 17: 46–54. Search in Google Scholar

Kazun B., Kazun K. (2014). Probiotics in aquaculture. Med. Weter., 70: 25–29. Search in Google Scholar

Kelly C.J., Connolly P.L., Bracken J.J. (1999). Age estimation, growth, maturity, and distribution of the bluemouth rockfish Helicolenus d. dactylopterus (Delaroche 1809) from the Rockall Trough. ICES J. Marine Sci., 56: 61–74. Search in Google Scholar

Khairuzzaman M.W., Jamaluddin M.A., Sani M.S.A. (2021). Black soldier fly larvae as animal feed: implications on the halal status of meat products. Halalsphere, 1: 1. Search in Google Scholar

Khanjani M.H., Mozanzadeh M.T., Foes G.K. (2022 a). Aquamimicry system: a suitable strategy for shrimp aquaculture – a review. Ann. Anim. Sci., 22: 1201–1210. Search in Google Scholar

Khanjani M.H., Zahedi S., Mohammadi A. (2022 b). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., 29: 67513–67531. Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022 c). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 1–17. Search in Google Scholar

Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Mikołajczak Z., Józefiak D. (2018). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800. Search in Google Scholar

Kim C.H., Ryu J., Lee J., Ko K., Lee J., Park K.Y., Chung H. (2021). Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: a review. Processes, 9: 161. Search in Google Scholar

Korkea-Aho T.L., Papadopoulou A., Heikkinen J., Von wright A., Adams A., Austin B., Thompson K.D. (2012). Pseudomonas M162 confers protection against rainbow trout fry syndrome. J. Appl. Microbiol., 113: 24–35. Search in Google Scholar

Lakra W.S., Ayyappan S. (2003). Recent advances in biotechnology applications to aquaculture. Asian-Australas. J. Anim. Sci., 16: 455–462. Search in Google Scholar

Lalander C., Fidjeland J., Diener S., Eriksson S., Vinneras B. (2015). High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain Dev., 35: 261–271. Search in Google Scholar

Landis J.B., Soltis D.E., Li Z., Marx H.E., Barker M.S., Tank D.C., Soltis P.S. (2018). Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J Bot., 105: 348–363. Search in Google Scholar

Laporte M., Berrebi P., Claude J., Viyoles D., Pourovira Q., Raymond J.C., Magnan P. (2018). The ecology of sexual dimorphism in size and shape of the freshwater benny fluviatilis. Curr. Zool., 64: 183–191. Search in Google Scholar

Lawrence C.S., Cheng Y.W., Morriss N.M., Williams I.H. (2000). A comparison of mixed-sex vs. monosex grow out and different diets on the growth rate of freshwater crayfish Cherax albidus. Aquaculture, 185: 281–289. Search in Google Scholar

Lazado C.C., Caipang C.M.A., Brinchmann M.F., Kiron V. (2011). In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Vet. Microbiol., 148: 252–259. Search in Google Scholar

Li H., Chen S., Liao K., Ku Q., Zhou W. (2020). Microalgae biotechnology as a promising pathway to eco-friendly aquaculture: a state-of-the-art review. J. Chem. Technol. Biotechnol., 96: 837–852. Search in Google Scholar

Li J., Li J., Sun Y., Liu X., Liu M., Cheng Y. (2019). Juvenile Procambarus clarkii farmed using biofloc technology or commercial feed in zero-water exchange indoor tanks: A comparison of growth performance, enzyme activity and proximate composition. Aquac. Res., 50: 1834–1843. Search in Google Scholar

Liang X., Zhang C., Du D., Gao M., Sui L. (2022). Application of biofloc technology in recirculation Artemia culture system. J. Oceanol. Limnol., 40: 1669–1677. Search in Google Scholar

Lim J.H., Majid A.H. (2021). IoT Monitoring System for Aquaculture Farming. Progr. Eng. Appl. Technol., 2: 567–577. Search in Google Scholar

Lock E., Arsiwalla T., Waagbo R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr., 22: 1202–1213. Search in Google Scholar

Luis-Villasenor I.E., Macias-Rodriguez M.E., Gomez-Gil B., Ascencio-Valle F., Campa-Cordova A.I. (2011). Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture, 321: 136–144. Search in Google Scholar

Ma J., Bruce T.J., Jones E.M., Cain K.D. (2019). A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms, 7: 18. Search in Google Scholar

Ma K., Ba Q., Wu Y., Chen S., Zhao S., Wu H., Fan J. (2020). Evaluation of microalgae as immunostimulants and recombinant vaccines for diseases prevention and control in aquaculture. Front. Bioeng. Biotechnol., 16. Search in Google Scholar

Mahdhi A., Kamoun F., Messina C., Santulli A., Bakhrouf A. (2012). Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchus labrax) larval rearing. Afr. J. Microbiol. Res., 6: 6487–6495. Search in Google Scholar

Makkar H.P., Tran G., Heuz´e V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33. Search in Google Scholar

Manan H., Ikhwanuddin M. (2021). Triploid induction in penaeid shrimps aquaculture: a review. Rev. Aquac., 13: 619–631. Search in Google Scholar

Manan H., Moh J.H.Z., Kasan N.A., Suratman S., Ikhwanuddin M. (2017). Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl. Water. Sci., 7: 2437–2446. Search in Google Scholar

Manan H., Rosland N.A., Deris Z.M., Hashim N.F.C., Kasan N.A., Ikhwanuddin M., Suloma A., Fauzan F. (2022). 16S rRNA sequences of Exiguobacterium spp. bacteria dominant in a biofloc pond cultured with Whiteleg shrimp, Penaeus vannamei. Aquac. Res., 53: 2029–2041. Search in Google Scholar

Manor R., Aflalo E.D., Segall C., Weil S., Azulay D., Ventura T., Sagi A. (2004). Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebr. Reprod. Dev., 45: 151–159. Search in Google Scholar

Mansour A.T., Ashry O.A., Ashour M., Alsaqufi A.S., Ramadan K.M.A., Sharawy Z. (2022). The optimization of dietary protein level and carbon sources on biofloc nutritive values, bacteria abundance, and growth performances of Whiteleg shrimp (Litopenaeus vannamei) juveniles. Life (Basel), 12: 888. Search in Google Scholar

Meril D., Piliyan R., Perumal S., Sundarraj D.K., Binesh A. (2022). Efficacy of alginate immobilized microalgae in the bioremediation of shrimp aquaculture wastewater. Process Biochem., 122: 196–202. Search in Google Scholar

Mondal H., Thomas J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquacult. Int., 30: 1971–2000. Search in Google Scholar

Muller-Feuga A. (2000). The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol., 12: 527–534. Search in Google Scholar

Nagamine C., Knight A.W., Maggenti A., Paxman G. (1980). Masculinization of female Macrobrachium rosenbergii (de man) (Decapoda, Palaemonidae) by androgenic gland implantation. Gen. Comp. Endocrinol., 41: 442–457. Search in Google Scholar

Nagappan S., Das P., Quadir M.A., Thaher M., Khan S., Mahata C., Al-Jabri H., Vatland A.K., Kumar G. (2021). Potential of microalgae as sustainable feed ingredient for aquaculture. J. Biotechnol., 341: 1–20. Search in Google Scholar

Nair C.M., Salin K.R., Raju M.S., Sebastian M. (2006). Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii De Man): a case study. Aquac. Res., 37: 949–954. Search in Google Scholar

Nayak S.K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29: 2–14. Search in Google Scholar

Neori A., Chopin T., Troell M., Buschmann A.H., Kraemer G.P., Halling C., Shpigel M. Yarish C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231: 361–391. Search in Google Scholar

Panigrahi A., Otta S.K., Kumaraguru Vasagam K.P., Shyne Anand P.S., Biju I.F., Aravind R., (2019). Training manual on Biofloc technology for nursery and grow-out aquaculture, CIBA TM Series, 15: 172. Search in Google Scholar

Park S., Chang B., Yoe S. (2014). Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res., 44: 58–64. Search in Google Scholar

Parker R.B. (1974). Probiotics, the other half of the antibiotic story. Anim. Nutr. Health, 29: 4–8. Search in Google Scholar

Penman D.J., McAndrew B.J. (2000). Genetics for the management and improvement of cultured tilapias. In: Tilapias: Biology and exploitation. Springer, Dordrecht, pp. 227–266. Search in Google Scholar

Perdikaris C., Chrysafi A., Ganias K. (2016). Environmentally friendly practices and perceptions in aquaculture: a sectoral case-study from a Mediterranean-based industry. Rev. Fish. Sci., 24: 113–125. Search in Google Scholar

Piferrer F., Beaumont A., Falguière J.C., Flajšhans M., Haffray P., Colombo L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture, 293: 125–156. Search in Google Scholar

Prabu E., Rajagopalsamy C.B.T., Ahilan B., Jeevagan I.J.M.A., Renuhadevi M. (2019). Tilapia – an excellent candidate species for world aquaculture: a review. Annu. Res. Rev. Biol., 31: 1–14. Search in Google Scholar

Prapti D.R., Shariff A.R.M., Che Man H., Ramli N.M.., Perumal T., Shariff M. (2021). Internet of Things (IoT)-based aquaculture: An overview of IoT application on water quality monitoring. Rev. Aquac., 14: 979–992. Search in Google Scholar

Qin Y., Zhang Y., Mo R., Zhang Y., Li J., Zhou Y., Ma H., Xiao S., Yu Z. (2019). Influence of ploidy and environment on grow-out traits of diploid and triploid Hong Kong oysters Crassostrea hongkongensis in southern China. Aquaculture, 507: 108–118. Search in Google Scholar

Qin Y., Li X., Noor Z., Li J., Zhou Z., Ma H., Xiao S., Mo R., Zhang Y., Yu Z. (2020). A comparative analysis of the growth, survival and reproduction of Crassostrea hongkongensis, Crassostrea ariakensis, and their diploid and triploid hybrids. Aquaculture, 520: 1–11. Search in Google Scholar

Rahman M.A., Lee S.G., Yusoff F.M., Rafiquzzaman S.M. (2018). Hybridization and its application in aquaculture. In: Sex control in aquaculture, Wang H.P., Piferrer F., Chen S.L., Shen Z.G. (eds). John Wiley & Sons, pp. 163–178. Search in Google Scholar

Raju K.R.S.R., Varma G.H.K. (2017). Knowledge Based Real Time monitoring system for aquaculture using IoT. Proc. IEEE 7th International Advance computing conference (IACC), pp. 318–321. Search in Google Scholar

Ramli S.S., Jauhari I., Manan H., Ikhwanuddin M., Kasan N.A. (2022). Effect of different C/N ratio, carbon sources, and aeration flow rates on ammonia fluctuations during start-up period of biofloc-based system. Aquacult. Int., 31: 367–380. Search in Google Scholar

Ramsey J., Schemske D.W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Evol. Syst., 29: 467–501. Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 11. Search in Google Scholar

Restrepo L., Donínguez-Borbor C., Bajaña L., Betancourt I., Rodríguez J., Bayot B., Reyes A. (2021). Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus). Microbiome, 9: 88. Search in Google Scholar

Roderick E. (2004). Monosex tilapia production. Global aquaculture advocate. Available online at: https://www.globalseafood.org/advocate/monosex-tilapia-production/. Search in Google Scholar

Romano N. (2017). Aquamimicry: a revolutionary concept for shrimp farming. The Global Aquaculture Advocate, 1–6. https://www.globalseafood.org/advocate/aquamimicry-a-revolutionary-concept-for-shrimp-farming/ (Access: 27/9/2022). Search in Google Scholar

Rosa J., Lemo M.F.L., Crespo D., Nunes M., Freitas A., Ramos F., Miguel Â.P., Leston S. (2020). Integrated multitrophic aquaculture systems – potential risks for food safety. Trends Food Sci. Technol., 96: 79–90. Search in Google Scholar

Rosen O., Manor R., Weil S., Gafni O., Linial A., Aflalo E.D., Ventura T., Sagi A. (2010). A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS ONE., 5: 12. Search in Google Scholar

Roy S.S., Pal R. (2015). Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc. Zool. Soc., 68: 1–8. Search in Google Scholar

Sagi A. (2013). Monosex culture of prawns through androgenic gene silencing. Infofish International. Available at: globalseafood.org/advocate/monosex-culture-of-prawns-through-temporal-androgenic-gene-silencing/. Search in Google Scholar

Sagi A., Afalo E.D. (2005). The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (De Man): a biotechnological perspective. Aquac. Res., 36: 231–237. Search in Google Scholar

Sagi A., Ra’anan Z., Cohen D., Wax Y. (1986). Production of Macrobrachium rosenbergii in monosex population: yield characteristics under intensive monoculture conditions in cages. Aquaculture, 51: 265–275. Search in Google Scholar

Sagi A., Cohen D., Milner Y. (1990). Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii. Gen. Comp. Endocrinol., 77: 15–22. Search in Google Scholar

Saha S., Hasan Rajib R., Kabir S. (2018). IoT based automated fish farm aquaculture monitoring system. Proc. International Conference on Innovations in Science, Engineering and Technology (ICISET), pp. 201–206. Search in Google Scholar

Saima M.A., Khan M.Z., Anjum M.I., Ahmed S., Rizwan M., Ijaz M. (2008). Investigation on the availability of amino acids from different animal protein sources in golden cockerels. J. Anim. Plant. Sci., 18: 3–56. Search in Google Scholar

Sandhya S.V., Sandeep K.P., Vijayan K.K. (2020). In vivo evaluation of microbial cocktail of microalgae-associated bacteria in larval rearing from zoea I to mysis I of the Indian white shrimp, Penaeus indicus. J. Appl. Phycol., 32: 3949–3954. Search in Google Scholar

Sanz-Lazaro C., Sanchez-Jerez P. (2020). Regional integrated multitrophic aquaculture (RIMTA): spatially separated, ecologically linked. J. Environ. Manage., 271: 1–6. Search in Google Scholar

Satoh N., Takaya Y., Takeuchi T. (2009). The effect of docosahexaenoic and eicosapentaenoic acids in live food on the development of abnormal morphology in hatchery-reared brown sole Pseudopleuronectes herzensteini. Fish. Sci., 75: 1001–1006. Search in Google Scholar

Sharifinia M., Keshavarzifard M., Hosseinkhezri P., Khanjani M.H., Yap C.K., Smith W.O., Daliri M., Haghshenas A. (2022). The impact assessment of desalination plant discharges on heavy metal pollution in the coastal sediments of the Persian Gulf. Mar. Pollut. Bull., 178: 1–8. Search in Google Scholar

Shefat S. (2018). Vaccines for use in finfish aquaculture. Acta. Scient. Pharmaceut. Sci., 2: 15–19. Search in Google Scholar

Shpigel M., Shauli L., Odintsov V., Ashkenazi N., Ben-Ezra D. (2018). Ulva lactuca biofilter from a land-based integrated multi trophic aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis. Aquaculture, 496: 221–231. Search in Google Scholar

Shreedharan K., Kulkarni A., Rajendran K.V. (2022). Prospects of vaccination in crustaceans with special reference to shrimp. In: Fish immune system and vaccines, Makesh M., Rajendran K.V. (eds). Springer, Singapore, pp. 181–216. Search in Google Scholar

Sirakov I., Velichkova K., Stoyanova S., Staykov Y. (2015). The importance of microalgae for aquaculture industry. Rev. Int. J. Fish. Aquat., 2: 31–37. Search in Google Scholar

Smith C.A., Roeszler K.N., Ohnesorg T., Cummins D.M., Farlie P.G., Doran T.J., Sinclair A.H. (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature, 461: 267–271. Search in Google Scholar

Snieszko S.F., Friddle S.B. (1949). Prophylaxis of furunculosis in brook trout (Salvelinus fontinalis) by oral immunization and sulfamerazine. Prog. Fish C., 11: 161–168. Search in Google Scholar

Snieszko S., Piotrowska W., Kocylowski B., Marek K. (1938). Badania bakteriologiczne i serologiczne nad bakteriami posocznicy karpi. Memoires de l’Institut d’Ichtyobiologie et Pisciculture de la Station de Pisciculture Experimentale a Mydlniki de l’Universite Jagiellonienne a Cracovie, Nr 38. Search in Google Scholar

Soto D. (2009). Integrated mariculture: a global review. FAO fisheries and aquaculture technical paper no. 529. Food and Agriculture Organization of the United Nations (FAO). Search in Google Scholar

Soto-Rodriguez S.A., Magollon-Servin P., Lopez-Vela M., Sot M.N. (2021). Inhibitory effect of marine microalgae used in shrimp hatcheries on Vibrio parahaemolyticus responsible for acute hepatopancreatic necrosis disease. Aquac. Res., 53: 1337–1347. Search in Google Scholar

Su H., Yakovlev I.A., van Eerde A., Su J., Clarke J.C. (2021). Plantproduced vaccines: future applications in aquaculture. Front. Plant Sci., 12: 718775. Sugita H., Miyajima C., Deguchi H. (1991). The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture, 92: 267–276. Search in Google Scholar

Swinscoe I., Oliver D.M., Gilburn A.S., Lunestad B.T., Lock E.J., Ornsrud R., Quilliam R.S. (2018). Seaweed-fed black soldier fly (Hermetia illucens) larvae as feed for salmon aquaculture: assessing the risks of pathogen transfer. J. Insects Food Feed, 5: 1–14. Search in Google Scholar

Taher S., Romano N., Arshad A., Ebrahimi M., Teh J.C., Ng W.K., Kumar V. (2017). Assessing the feasibility of dietary soybean meal replacement to the swimming crab, Portunus pelagicus, juveniles. Aquaculture, 469: 88–94. Search in Google Scholar

Taketomi Y., Murata M., Miyawaki M. (1990). Androgenic gland and secondary sexual characters in the crayfish Procambarus clarkii. J. Crustac. Biol., 10: 492–497. Search in Google Scholar

Tan K., Zhou M., Jiang H., Jiang D., Li Y., Wang W. (2020 a). siRNAmediated MrIAG silencing induces sex reversal in Macrobrachium rosenbergii. Mar. Biotechnol., 22: 456–466. Search in Google Scholar

Tan K., Jiang H., Jiang D., Wang W. (2020 b). Sex reversal and the androgenic gland (AG) in Macrobrachium rosenbergii: A review. Aquac. Fish., 5: 283–288. Search in Google Scholar

Taranger GL, Carillo M, Schulz R.W., Fontaine P., Zanuy S., Felip A., Weltzien F.A., Dufour Karlsen O., Norberg B., Andersson E., Hausen T. (2010). Control of puberty in farmed fish. Gen. Comp. Endocrinol., 165: 483–515. Search in Google Scholar

Ten Doeschate K.I., Coyne V.E. (2008). Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture, 284: 174–179. Search in Google Scholar

Thomas M., Pasquet A., Aubin J., Nahon S., Lecocq T. (2021). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biol Rev., 96: 767–784. Search in Google Scholar

Tom A.P., Jayakumar J.S., Biju M., Somaraja J., Ibrahim M.A. (2021). Aquaculture wastewater treatment technologies and their sustainability: a review. Energy Nexus., 4: 1–9. Search in Google Scholar

Troell M., Joyce A., Chopin T., Neori A., Buschmann A.H., Fang J.G. (2009). Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297: 1–9. Search in Google Scholar

Ventura T. (2018). Monosex in Aquaculture. In: Marine organisms as model systems in biology and medicine. Results and problems in cell differentiation, Kloc M., Kubiak J. (eds). Springer, Cham, 65. Search in Google Scholar

Ventura T., Sagi A. (2012). The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv., 30: 1543–1550. Search in Google Scholar

Ventura T., Manor R., Aflalo E.D., Weil S., Raviv S., Glazer L., Sagi A. (2009). Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology, 150: 1278–1286. Search in Google Scholar

Ventura T., Rosen O., Sagi A. (2011). From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. Gen. Comp. Endocrinol., 173: 381–388. Search in Google Scholar

Ventura T., Manor R., Aflalo E.D., Weil S., Rosen O., Sagi A. (2012). Timing sexual differentiation: full functional sex reversal achieved through silencing of a single insulin like gene in the prawn, Macrobrachium rosenbergii. Reprod. Biol., 86: 90. Search in Google Scholar

Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64: 651–671. Search in Google Scholar

Wang S., Zhou P., Huang X., Liu Q., Lin B., Fu Y., Liu S. (2020). The establishment of an autotetraploid fish lineage produced by female allotetraploid hybrids × male homodiploid hybrids derived from Cyprinus carpio (♀) × Megalobrama amblycephala (♂). Aquaculture, 515: 1–14. Search in Google Scholar

Wang Y.S., Shelomi M. (2017). Review of BSF (Hermetia illucens) as animal feed and human food. Foods, 91. Search in Google Scholar

Wu C., Huang X., Hu F., Ouyang Y., Zhao L., Wang S., Li W., Fan J., Zhang C., Ren L. (2019). Production of diploid gynogenetic grass carp and triploid hybrids derived from the distant hybridization of female grass carp and male topmouth culter. Aquaculture, 504: 462–470. Search in Google Scholar

Xiao J., Zou T., Chen Y., Chen L., Liu S., Tao M., Zhan C., Zhao R., Zhou Y., Long Y., You C. (2011). Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet., 12: 1–15. Search in Google Scholar

Xu H., Li Q., Han Z., Li S., Yu H., Kong L. (2019). Fertilization, survival and growth of reciprocal crosses between two oysters, Crassostrea gigas and Crassostrea nippona. Aquaculture, 507: 91–96. Search in Google Scholar

Yoo G.Y., Lee T.H., Gil H.W., Lim S.G., Park I.S. (2018). Cytogenetic analysis of hybrids and hybrid triploids between the river puffer, Takifugu obscurus, and the tiger puffer, Takifugu rubripes. Aquac. Res., 49: 637–650. Search in Google Scholar

Yue K., Shen Y. (2022). An overview of disruptive technologies for aquaculture. Aquacult. Fish., 7: 111–120. Search in Google Scholar

Yuvarajan P. (2020). Study on floc characteristics and bacterial count from biofloc-based genetically improved farmed tilapia culture system. Aquac. Res., 52: 1743–1756. Search in Google Scholar

Zamora L. N., Yuan X., Carton A.G., Slater M.J. (2018). Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges. Rev. Aquac., 10: 57–74. Search in Google Scholar

Zeng S., Khoruamkid S., Kongpakdee W., Wei D., Yu L., Wang H., Deng Z., Weng S., Huang Z., He J., Satapornvanit K. (2020). Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system. AMB Express, 10: 1–1. Search in Google Scholar

Zhang Y., Zhang Y., Wang Z., Yan X., Yu Z. (2014). Phenotypic trait analysis of diploid and triploid hybrids from female Crassostrea hongkongensis × male C. gigas. Aquaculture, 434: 307–314. Search in Google Scholar

Zhang Y., Qin Y., Yu Z. (2022 a). Comparative study of tetraploidbased reciprocal triploid Portuguese oysters, Crassostrea angulata, from seed to market size. Aquaculture, 547: 1–8. Search in Google Scholar

Zhang P., Peng R., Jiang X., Jiang M., Zeng G. (2022 b). Effects of Nannochloropsis oculata and Thalassiosira pseudonana monocultures on growth performance and nutrient composition of Litopenaeus vannamei. Algal. Res., 66. Search in Google Scholar

Zheng L., Crippen T.L., Singh B., Tarone A.M., Dowd S., Yu Z., Wood T.K., Tomberlin J.K. (2013). A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing. J. Med. Entomol., 50: 647–658. Search in Google Scholar

Zhou Q.C., Buentello J.A., Gatlin III D.M. (2010). Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, 309: 253–257. Search in Google Scholar

Zokaeifar H., Balcazar J.L., Saad C.R., Kamarudin M.S., Sijam K., Arshad A., Nejat N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 33: 683–689. Search in Google Scholar

Zozo B., Wicht M.M., Mshayisa V.V., Wyk J.V. (2022). The nutritional quality and structural analysis of black soldier fly larvae flour before and after defatting. Insects, 13: 168. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin