1. bookVolumen 23 (2023): Heft 2 (April 2023)
25 Nov 2011
4 Hefte pro Jahr
Uneingeschränkter Zugang

Antibacterial activity of metallic-core gold and silver nanoparticles against some animal pathogens

Online veröffentlicht: 03 May 2023
Volumen & Heft: Volumen 23 (2023) - Heft 2 (April 2023)
Seitenbereich: 473 - 479
Eingereicht: 17 Dec 2022
Akzeptiert: 16 Jan 2023
25 Nov 2011
4 Hefte pro Jahr

Abd El-Hack M.E., Alagawany M., Farag M.R., Tiwari R., Karthik K., Dhama K. (2016). Nutritional, healthical and therapeutic efficacy of black cumin (Nigella sativa) in animals, poultry and humans. Int. J. Pharmacol., 12: 232–248. Search in Google Scholar

Abd El-Hack M.E., El-Saadony M.T., Shehata A.M., Arif M., Paswan V. K., Elbestawy A.R. (2021). Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: review. Environ. Sci. Poll. Res., 28: 4989–5004. Search in Google Scholar

Abdalhamed A.M., Ghazy A.A., Ibrahim E.S., Arafa A.A., Zeedan G.G. (2021 a). Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants. Vet. World., 12: 3200–3210. Search in Google Scholar

Abdalhamed A.M., Ghazy A.A., Zeedan G.S.G. (2021 b). Studies on multidrug-resistance bacteria in ruminants with special interest on antimicrobial resistances genes. Adv. Anim. Vet. Sci., 9: 835–844. Search in Google Scholar

Abdel-Moneim A.M.E., Shehata A.M., Alzahrani S.O., Shafi M.E., Mesalam N.M., Taha A.E., Abd El-Hack M.E. (2020). The role of polyphenols in poultry nutrition. J. Anim. Physiol. Anim. Nutr., 104: 1851–1866. Search in Google Scholar

Abo Ghanima M.M., Aljahdali N., Abuljadayel D.A., Shafi M.E., Qadhi A., Abd El-Hack M.E., Mohamed L.A. (2023). Effects of dietary supplementation of Amla, Chicory and Leek extracts on growth performance, immunity and blood biochemical parameters of broilers. Italian J. Anim. Sci., 22: 24–34. Search in Google Scholar

Adegbeye M.J., Elghandour M.M., Reddy P.R.K., Alqaisi O., Oloketuyi S., Salem A.Z., Asaniyan E.K. (2021). Potential of silver nanoparticles for veterinary applications in livestock performance and health. In: Silver nanomaterials for agri-food applications. Elsevier, pp. 657–683. Search in Google Scholar

Ahmed S., Saifullah A.M., Swami B.L., Ikram S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Rad. Res. Appl. Sci., 9: 1–7. Search in Google Scholar

Alagawany M., Abd El-Hack M.E., El-Kholy M.S. (2016). Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. Poll. Res., 23: 6774–6782. Search in Google Scholar

Alizadeh H., Salouti M., Shapouri R. (2014). Bactericidal effect of silver nanoparticles on intra macrophage Brucella abortus 544. Jundishapur J. Microbiol., 7: e9039. Search in Google Scholar

Al-Otaibi A.M., Abd El-Hack M.E., Dmour S.M., Alsowayeh N., Khafaga A.F., Ashour E.A., Nour-Eldeen M.A., Świątkiewicz S. (2023). A narrative on review the beneficial impacts of probiotics on poultry: an updated knowledge. Ann. Anim. Sci., 23: DOI: 10.2478/aoas-2023-0001 Search in Google Scholar

Anbu P., Gopinath, S.C., Jayanthi S. (2020). Synthesis of gold nanoparticles using Platycodon grandiflorum extract and its antipathogenic activity under optimal conditions. Nanomat. Nanotechnol., 10: 1847980420961697. Search in Google Scholar

Athreya A.G., Shareef M.I., Gopinath S.M. (2020). Silver nanoparticles from cow’s milk to combat multidrug-resistant gram-negative bacteria from clinical isolates. Proc. Natl. Acad. Sci., India, Sect. B. Biol. Sci., 90: 863–871. Search in Google Scholar

Barani M., Fathizadeh H., Arkaban H., Kalantar-Neyestanaki D., Akbarizadeh M.R., Turki Jalil A., Akhavan-Sigari R. (2022). Recent advances in nanotechnology for the management of Klebsiella pneumoniae-related infections. Biosensors, 12: 1155. Search in Google Scholar

Chauhan N., Tyagi A.K., Kumar P., Malik A. (2016). Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against foodborne pathogens. Front. Microbiol., 7: 1748. Search in Google Scholar

Dhanker R., Rawat S., Chandna V., Kumar R., Das S., Sharma A., Kumar V. (2022). Recovery of silver nanoparticles and management of food wastes: obstacles and opportunities. Environ. Adv., 100303. Search in Google Scholar

Elbehiry A., Aldubaib M., Al Rugaie O., Marzouk E., Moussa I., El-Husseiny M., Ibrahem M., Abalkhail A., Rawway M. (2022). Brucella species-induced brucellosis: Antimicrobial effects, potential resistance and toxicity of silver and gold nanosized particles. PLoS One, 17(7): e0269963. Search in Google Scholar

El-Gohary F.A., Abdel-Hafez L.M., Zakaria A.I., Shata R.R., Tahoun A., El-Mleeh A., Abo Elfadl E.A., Elmahallawy E.K. (2020). Enhanced antibacterial activity of silver nanoparticles combined with hydrogen peroxide against multidrug-resistant pathogens isolated from dairy farms and beef slaughterhouses in Egypt. Infect. Drug. Resist., 13: 3485–3499. Search in Google Scholar

Farouk M.M., El-Molla A., Salib F.A., Soliman Y.A., Shaalan M. (2020). The role of silver nanoparticles in a treatment approach for multidrug-resistant Salmonella species isolates. Int. J. Nanomedicine, 15: 6993. Search in Google Scholar

Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G.,Galdiero M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20: 8856–8874. Search in Google Scholar

Gouyau J., Duval R.E., Boudier A., Lamouroux E. (2021). Investigation of nanoparticle metallic core antibacterial activity: Gold and silver nanoparticles against Escherichia coli and Staphylococcus aureus. Int. J. Mol. Sci., 22: 1905. Search in Google Scholar

Guo Y., Song G., Sun M., Wang J., Wang Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol., 10: 107. Search in Google Scholar

Hegazi A., Elshazly E.H., Abdou A.M., Abd Allah F., Abdel-Rahman E.H. (2014). Potential antibacterial properties of silver nanoparticles conjugated with cow and camel milks. Global Vet., 12: 745. Search in Google Scholar

Jakinala P., Lingampally N., Hameeda B., Sayyed R.Z., Khan M.Y., Elsayed E.A., El Enshasy H. (2021). Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PloS One, 16: e0241729. Search in Google Scholar

Kotzamanidis C., Vafeas G., Giantzi V., Anastasiadou S., Mygdalias S., Malousi A., Loukia E., Daniel S., Zdragas A. (2021). Staphylococcus aureus isolated from ruminants with mastitis in northern Greece dairy herds: genetic relatedness and phenotypic and genotypic characterization. Toxins, 13: 176. Search in Google Scholar

Langoni H., Guiduce M.S., Nóbrega D.B., da Silva R.C., Richini-Pereira V.B., Salina A., de F. Guimarães F. (2015). Research of Klebsiella pneumoniae in dairy herds. Pesq. Vet. Bras., 35: 9–12. Search in Google Scholar

Masimen M.A., Harun N.A, Maulidiani M., Ismail W.W. (2022). Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics, 11: 951. Search in Google Scholar

Mikhailova E.O. (2020). Silver nanoparticles: mechanism of action and probable bio-application. J. Func. Biomater., 11: 84. Search in Google Scholar

Mikhailova E.O. (2021). Gold nanoparticles: biosynthesis and potential of biomedical application. J. Func. Biomater., 12: 70. Search in Google Scholar

Mirnejad R., Erfani M., Sadeghi B., Piranfar V. (2013). Synergistic effect of silver nanoparticles with streptomycin on the streptomycin-resistant Brucella abortus. J. Shahrekord Univ. Med. Sci., 15: 72–79. Search in Google Scholar

Munoz M., Zadoks R. (2007). Patterns of fecal shedding of Klebsiella by dairy cows. J. Dairy Sci., 90: 1220–1224. Search in Google Scholar

Murei A., Pillay K., Samie A. (2021). Syntheses, characterization, and antibacterial evaluation of P. grandiflora extracts conjugated with gold nanoparticles. J. Nanotechnol., 2021. Search in Google Scholar

Nagar N., Jain S., Kachhawah P., Devra V. (2016). Synthesis and characterization of silver nanoparticles via green route. Korean J. Chem. Eng., 33: 2990–2997. Search in Google Scholar

Narayan S., Dipak S. (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci., 5: 703–709. Search in Google Scholar

Okkeh M., Bloise N., Restivo E., De Vita L., Pallavicini P., Visai L. (2021). Gold nanoparticles: can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials (Basel), 11: 312. Search in Google Scholar

Saeed M., Abd El-Hack M.E., Alagawany M., Arain M.A., Arif M., Mirza M.A., Dhama K. (2017). Chicory (Cichorium intybus) herb: Chemical composition, pharmacology, nutritional and healthical applications. Inter. J. Pharm., 13: 351–360. Search in Google Scholar

Salah R., Karmy M., Abdelraouf A., Kotb S. (2020). Evaluation of the bactericidal effect of silver nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains isolated from mastitic milk of small ruminants and their surrounding environment in Aswan, Egypt. J. Vet. Med. Res., 27: 143–151. Search in Google Scholar

Selim A., Elhaig M.M., Taha S.A., Nasr E.A. (2018). Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Rev. Sci. Tech OIE, 37: 823–830. Search in Google Scholar

Senthilkumar S., Kashinath L., Ashok M., Rajendran A. (2017). Antibacterial properties and mechanism of gold nanoparticles obtained from Pergularia daemia leaf extract. J. Nanomed. Res., 6: 00146. Search in Google Scholar

Shaalan I.M., ElMahdy M.M., Theiner S., El-Matbouli M., Saleh M. (2017). In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand., 59: 49. Search in Google Scholar

Shah S., Shah S.A., Faisal S., Khan A., Ullah R. (2022). Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. J. Nanostruct. Chem., 12: 129–140. Search in Google Scholar

Singh H., Du J., Singh P., Yi T.H. (2018). Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cell. Nanomed. Biotechnol., 46: 1163–1170. Search in Google Scholar

Singh M., Kalaivani R., Manikandan S., Sangeetha N., Kumaraguru A.K. (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci., 2: 145–151. Search in Google Scholar

Sofiana E.D., Pratama J.A., Effendi M.H., Plumeriastuti H., Wibisono F.M., Hartadi E.B., Hidayatullah A.R. (2020). A review of the presence of antibiotic resistance problems on Klebsiella pneumoniae acquired from pigs: Public health importance. Syst. Rev. Pharm., 11: 535–543. Search in Google Scholar

Swolana D., Wojtyczka R.D. (2022). The activity of silver nanoparticles against Staphylococcus spp. Int. J. Mol. Sci., 23: 4298. Search in Google Scholar

Talapko J., Matijević T., Juzbašić M., Antolović-Požgain A., Škrlec I. (2020). Antibacterial activity of silver and its application in dentistry, cardiology, and dermatology. Microorganisms, 8: 1400. Search in Google Scholar

Theivasanthi T., Alagar M. (2011). Antibacterial studies of silver nanoparticles. arXiv preprint arXiv: 1101.0348. Trott D. J., Abraham S., Adler B. (2018). Antimicrobial resistance in Leptospira, Brucella, and other rarely investigated veterinary and zoonotic pathogens. Microbiol. Spectr., 6, doi: 10.1128/microbiolspec. ARBA-0029-2017. Search in Google Scholar

Vazquez-Muñoz R., Meza-Villezcas A., Fournier P.J., Soria-Castro E., Juarez-Moreno K., Gallego-Hernández A.L., Huerta-Saquero A. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PloS One, 14(11): e0224904. Search in Google Scholar

Zalewska M., Błażejewska A., Czapko A., Popowska M. (2021). Antibiotics and antibiotic resistance genes in animal manure – consequences of its application in agriculture. Front. Microbiol., 12: 640–661. Search in Google Scholar

Zawrah M.F., El-Moez S.A., Center D. (2011). Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci. J., 8: 37–44. Search in Google Scholar

Empfohlene Artikel von Trend MD