Zitieren

Abbaszadeh A., Mozanzadeh M.T., Qasemi A., Oujifard A., Nafisi Bahabadi M. (2022). Effects of the addition of Calanopia elliptica, Artemia franciscana, and Brachionus rotundiformis in a nursery biofloc system on water quality, growth, gut morphology, health indices, and transcriptional response of immune and antioxidant related genes in Penaeus vannamei. Aquac. Int., 30: 653–676.10.1007/s10499-021-00823-1 Search in Google Scholar

Abdel-Tawwab M., Khalil R.H., Nour A.M., Elkhayat B.K., Khalifa E., Abdel-Latif H.M.R. (2022). Effects of Bacillus subtilis-fermented rice bran on water quality, performance, antioxidants/oxidants, and immunity biomarkers of White leg shrimp (Litopenaeus vannamei) reared at different salinities with zero water exchange. J. Appl. Aquac., 34: 332–357.10.1080/10454438.2020.1844110 Search in Google Scholar

Albuquerque L.F.G. (2019). Desempenho zootécnico e econômico do cultivo de Penaeus vannamei usando o sistema aquamimicry. Tese de doutorado. Universidade Federal do Ceará (UFC). 77 pp. Search in Google Scholar

Alonso-Rodriguez R., Páes-Osuna F. (2003). Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219: 317–336.10.1016/S0044-8486(02)00509-4 Search in Google Scholar

Anh P.T., Kroeze C., Bush S.R., Mol A.P.J. (2010). Water pollution by intensive brackish shrimp farming in southeast Vietnam: Causes and options for control. Agric. Water Manag., 97: 872–882.10.1016/j.agwat.2010.01.018 Search in Google Scholar

Asaduzzaman M., Wahab M.A., Verdegem M.C.J., Huque S., Salam M.A., Azim M.E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280: 117–123.10.1016/j.aquaculture.2008.04.019 Search in Google Scholar

Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235.10.1016/S0044-8486(99)00085-X Search in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025 Search in Google Scholar

Avnimelech Y. (2009). Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 pp. Search in Google Scholar

Balcázar J.L., Blas I.D., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz J.L. (2006). The role of probiotics in aquaculture. Vet. Microbiol., 114: 173–186.10.1016/j.vetmic.2006.01.009 Search in Google Scholar

Bauer W.A., Prentice C.H., Tesser M.B., Wasilesky W. Jr., Poersch L.H.S. (2012). Substitution of fishmeal with microbial flocs meal and soy protein concentrations in diets from de pacific white shrimp Litopenaeus vannamei. Aquaculture, 342: 112–116.10.1016/j.aquaculture.2012.02.023 Search in Google Scholar

Biesebeke R. (2018). Balancing microbial ecosystems within humans and animals to prevent medical conditions. J. Nutr. Food Res. Technol., 1: 40.10.30881/jnfrt.00009 Search in Google Scholar

Biswas P.C., Sultana S., Kabiraj M., Sm S.H. (2019). Role of probiotics in aquaculture practice of Satkhira region of Bangladesh. Int. J. Fish. Aquat. Stud., 7: 174–181. Search in Google Scholar

Brito L.O., Chagas A.M., Silva E.P., Soares R.B., Severi W., Gálvez A.O. (2014). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquac Res., 47: 940–950.10.1111/are.12552 Search in Google Scholar

Butto L.F., Haller D. (2016). Dysbiosis in intestinal inflammation: cause or consequence. Int. J. Med. Microbiol., 306: 302–309.10.1016/j.ijmm.2016.02.010 Search in Google Scholar

Catalani K.M. (2020). Aquamimicry System: Technological alternative for intensive cultivation of marine shrimp Litopenaeus vannamei. A comparison with the Biofloc system (BFT). Thesis for master’s degree in aquaculture. Federal University of Rio Grande. Brazil, 58P. (https://ppgaquicultura.furg.br/en/dissertations-and-theses/dissertations/184-dissertacoes-de-2020/783-dissertacao-kim-catalani-2) Search in Google Scholar

Chakravarty S., Kumar S., Prakash S. (2018). Back to the basics: biomimicry in shrimp farming. Int. J. Curr. Microbiol. Appl. Sci., 7: 2172–2184.10.20546/ijcmas.2018.705.253 Search in Google Scholar

Conceição L.E.C., Yúfera M., Makridis P., Morais S., Dinis M.T. (2010). Live feeds for early stages of fish rearing. Aquac Res., 41: 613–640.10.1111/j.1365-2109.2009.02242.x Search in Google Scholar

Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356–357: 351–356.10.1016/j.aquaculture.2012.04.046 Search in Google Scholar

Dawood M.A., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Dossou S., Moss A.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.10.1016/j.fsi.2015.12.047 Search in Google Scholar

Dawood M.A.O., Koshio S., Esteban M.A. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.10.1111/raq.12209 Search in Google Scholar

De B.C., Meena D.K., Behera B.K., Das P., Das Mohapatra P.K., Sharma A.P. (2014). Probiotics in fish and shellfish culture: Immunomodulatory and Eco physiological responses. Fish Physiol. Biochem., 50: 1–10. Search in Google Scholar

De Melo F.P., Ferreira M.G.P., De Lima J.P.V., Correia E.D.S. (2015). Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Rev. Caatinga, 28: 202–210.10.1590/1983-21252015v28n422rc Search in Google Scholar

Deepak A.P., Vasava R.J., Elchelwar V.R., Tandel D.H., Vadher K.H., Shrivastava V., Prabhakar P. (2020). Aquamimicry: New an innovative apporoach for sustainable development of aquaculture. J. Entomol. Zool. Stud., 8: 1029–1031. Search in Google Scholar

Drillet G., Jørgensen N.O., Sørensen T.F., Ramløv H., Hansen B.W. (2006). Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res., 37: 756–772.10.1111/j.1365-2109.2006.01489.x Search in Google Scholar

Drillet G., Frouël S., Sichlau M.H., Jepsen P.M., Højgaard J.K., Joarder A.K., Hansen B.W. (2011). Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315: 155–166.10.1016/j.aquaculture.2011.02.027 Search in Google Scholar

El-Sayed A.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquacult., 13: 676–705.10.1111/raq.12494 Search in Google Scholar

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.x Search in Google Scholar

Esparza-Leal H.M., Cardozo A.P., Wasielesky W. (2015). Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system. Aquac. Eng., 68: 28–34.10.1016/j.aquaeng.2015.07.004 Search in Google Scholar

FAO (2020). The state of world fisheries and aquaculture, sustainability in action. Rome, 224 pp. Search in Google Scholar

Flores-Miranda C.M., Luna Gonzalez A., Cortes-Espinosa D.V., Cortes Jacinto E., Fierro-Coronado J.A., Alaves-Ruiz P., Hctor A.G.O., Ruth E.M. (2014). Bacterial fermentation of Lemna sp. as a potential Substitute of fish meal in shrimp diets. Afr. J. Microbiol. Res., 8: 516–526.10.5897/AJMR2014.6654 Search in Google Scholar

Gaona C.A.P., Serra F.P., Furtado P., Poersch L.H., Wasielesky W. (2016). Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac. Eng., 72–73: 65–69.10.1016/j.aquaeng.2016.03.004 Search in Google Scholar

Ghosh S., Sinha A., Sahu C. (2007). Effect of probiotic on reproductive performance in female live bearing ornamental fish. Aquac Res., 38: 518–526.10.1111/j.1365-2109.2007.01696.x Search in Google Scholar

Gonçalves G. (2022). image of an experiment using a symbiotic system or aquamimicry at the Marine Aquaculture Station, Federal University of Rio Grande, Brazil. master’s thesis. The dissertation is still being written. March, 2022. Search in Google Scholar

Gonçalves-Soares D., Zanette J., Yunes J., Yepiz-Plascencia G., Bainy A.C.D. (2012). Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Mar. Environ. Res., 75: 54–61.10.1016/j.marenvres.2011.07.007 Search in Google Scholar

Hari B., Kurup B.M., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2004). Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241: 179–194.10.1016/j.aquaculture.2004.07.002 Search in Google Scholar

Hong K.J., Lee C.H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food, 7: 430–435.10.1089/jmf.2004.7.430 Search in Google Scholar

Hou D., Huang Z., Zeng S., Liu J., Weng S., He J. (2018). Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J. Appl. Microbiol., 125: 792–799.10.1111/jam.13919 Search in Google Scholar

Huynhtg Y.L., Shiu T.P., Nguyen Q.P., Truong Q., Chen J., Liu C. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol., 64: 367–382.10.1016/j.fsi.2017.03.035 Search in Google Scholar

Iber B.T., Kasan N.A. (2021). Recent advances in shrimp aquaculture wastewater management. Heliyon, 7: e08283.10.1016/j.heliyon.2021.e08283 Search in Google Scholar

Jahangiri L., Esteban M.A. (2018). Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes, 3: 33.10.3390/fishes3030033 Search in Google Scholar

Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Muralidhar M. (2017). Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus vannamei Boone, 1931. Indian J. Fish., 64: 40–47.10.21077/ijf.2017.64.2.60341-07 Search in Google Scholar

Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Panigrahi A., Muralidhar M. (2019). Apparent digestibility coefficients of fungal fermented plant proteins in two different penaeid shrimps – A comparative study. Aquac. Res., 50: 1491–1500.10.1111/are.14024 Search in Google Scholar

Jayaprakashvel M., Subramani R. (2019). Implications of quorum sensing and quorum quenching in aquaculture health management. In: Implication of quorum sensing and biofilm formation in medicine, Agriculture and Food Industry. Springer, Singapore, pp. 299–312.10.1007/978-981-32-9409-7_18 Search in Google Scholar

Karlsen Ø., Van Der Meeren T., Rønnestad I., Mangor Jensen A., Galloway T.F., Kjørsvik E., Hamre K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae – Can we identify the underlying factors? Peer J., 3: e902–e902.10.7717/peerj.902 Search in Google Scholar

Kawahigashi D. (2018). Resultados de producción utilizando sistemas simbióticos. Anais do Aqua Expo El Oro 2018. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412 Search in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.10.1016/j.aquaculture.2021.736912 Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397.10.1007/s10499-021-00803-5 Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486.10.2478/aoas-2020-0036 Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29: 307–321.10.1007/s10499-020-00627-9 Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.10.2478/aoas-2021-0011 Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022 a). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021 Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 b). The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., DOI: 10.2478/aoas-2022–0027.10.2478/aoas-2022-0027 Search in Google Scholar

Kim S., Pang Z., Seo H., Cho Y.R., Samocha T., Jang I.K. (2014). Effect of biofloc on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei post larvae. Aquac Res., 45: 362–371.10.1111/are.12319 Search in Google Scholar

Kumar V.S., Pandey P.K., Anand G.R. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ. Manage., 215: 206–215.10.1016/j.jenvman.2018.03.015 Search in Google Scholar

Lara-Flores M. (2011). The use of probiotic in aquaculture an overview. Int. Res. J. Microbiol., 2: 471–478. Search in Google Scholar

Leu M.Y., Sune Y.H., Meng P.J. (2015). First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck and Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac Res., 46: 1087–1100.10.1111/are.12265 Search in Google Scholar

Li J., Tan B., Mai K. (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture, 291: 35–40.10.1016/j.aquaculture.2009.03.005 Search in Google Scholar

Liñan-Vidriales M.A., Peña-Rodríguez A., Tovar-Ramírez D., Elizondo-González R., Diana R. Barajas-Sandoval D.R., Ponce-Gracía E.I., Rodríguez-Jaramillo C., Balcázar J.L., Quiroz-Guzmán E. (2021). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531: 735958.10.1016/j.aquaculture.2020.735958 Search in Google Scholar

Liu K.F., Chiu C.H., Shiu Y.L., Cheng W., Liu C.H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol., 28: 837–844.10.1016/j.fsi.2010.01.012 Search in Google Scholar

Martinez-Cordova L.R., Campana-Torres A., Martinez-Porchas M. (2011). Effect of supplying four copepod densities (Acartia Sp. and Calanus pacificus) on the productive response of Litopenaeus vannamei pregrown intensively at microcosm level. Ciencias Marinas, 37: 415–423.10.7773/cm.v37i4A.1870 Search in Google Scholar

Martínez Cruz P., Ibáñez A.L., Monroy Hermosillo O.A., Ramírez Saad H.C. (2012). Use of probiotics in aquaculture. ISRN Microbial., ID 916845, 13 pp.10.5402/2012/916845367170123762761 Search in Google Scholar

Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M., Ringø E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1–18.10.1016/j.aquaculture.2010.02.007 Search in Google Scholar

Mulyasari Kurniawati F., Setiawati M. (2013). Cassava digestibility through chemical and biological treatment as feed for tilapia. Indones. Aquac. J., 12: 178−185.10.19027/jai.12.178-185 Search in Google Scholar

Nathanailides C., Kolygas M., Choremi K., Mavraganis T., Gouva E., Vidalis K., Athanassopoulou F. (2021). Probiotics have the potential to significantly mitigate the environmental impact of freshwater fish farms. Fishes, 6: 76.10.3390/fishes6040076 Search in Google Scholar

Nisar U., Peng D., Mu Y., Sun Y. (2022). A solution for sustainable utilization of aquaculture waste: A comprehensive review of biofloc technology and aquamimicry. Front. Nutr., https://doi.org/10.3389/fnut.2021.791738.10.3389/fnut.2021.791738879060435096936 Search in Google Scholar

Panigrahi A., Otta S.K., Kumaraguru Vasagam K.P., Shyne Anand P.S., Biju I.F., Aravind R. (2019). Training manual on Biofloc technology for nursery and grow out aquaculture, CIBA TM series, 15: 172. Search in Google Scholar

Qiu X., Davis D.A. (2018). Evaluation of dried fermented biomass as a feed ingredient in plant-based practical diets for juvenile Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr., 24: 383–391.10.1111/anu.12569 Search in Google Scholar

Radhakrishnan D.K., Ali I.A., Schmidt B.V., John E.M., Sivanpillai S., Vasunambesan S.T. (2019). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac Res., 51: 1–17.10.1111/are.14357 Search in Google Scholar

Razak D.L., Rashid N.Y., Jamaluddin A., Sharifudin S.A., Kahar A., Long K. (2017). Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci., 16: 127–134.10.1016/j.jssas.2015.04.001 Search in Google Scholar

Ren Z., Li A., Jiang J., Zhou L., Yu Z., Lu H., Xie H., Chen X., Shao L., Zhang R., Xu S., Zhang H., Cui G., Chen X., Sun R., Wen H., Lerut J.P., Kan Q., Li L., Zheng S. (2018). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68: 1014–1023.10.1136/gutjnl-2017-315084 Search in Google Scholar

Romano N. (2017). Aqamimicry: A revolutionary concept for shrimp farming. The Global Aquaculture Advocate, pp. 1–6. Search in Google Scholar

Romano N., Kumar V. (2017). Vegetarian shrimp: pellet-free shrimp farming. World Aquaculture, 12: 36–39. Search in Google Scholar

Romano N., Dauda A.B., Ikhsan N., Karim M., Kamarudin M.S. (2018). Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac Res., 49: 3691–3701.10.1111/are.13837 Search in Google Scholar

Santhanam P., Manickam N., Perumal P. (2020). Biofloc-copefloc: A novel technology towards sustained aquaculture. J. Indian Soc. Coast. Agric. Res., 38: 43–50. Search in Google Scholar

Satoh N., Takaya Y., Takeuchi T. (2009). The effect of docosahexaenoic and eicosapentaenoic acids in live food on the development of abnormal morphology in hatchery-reared brown sole Pseudopleuronectes herzensteini. Fish. Sci., 75: 1001–1006.10.1007/s12562-009-0125-x Search in Google Scholar

Shi C., He J., Yu J., Yu B., Huang Z., Mao X., Zheng P., Chen D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol., 6: 4618.10.1186/s40104-015-0015-2 Search in Google Scholar

Suprayudi A.M., Edriani G., Ekasari J. (2012). Evaluation of fermented product quality of various byproduct of local agroindustry: its influence on digestibility and performance of juvenile growth of common carp. Indones. Aquacu. J., 11: 1–10.10.19027/jai.11.1-10 Search in Google Scholar

Taher S., Romano N., Arshad A., Ebrahimi M., Teh J.C., Ng W.K., Kumar V. (2017). Assessing the feasibility of dietary soybean meal replacement to the swimming crab, Portunus pelagicus, juveniles. Aquaculture, 469: 88–94.10.1016/j.aquaculture.2016.11.036 Search in Google Scholar

Teixeira P. (2011). Fito plâncton e Protozooplâncton em viveiros de cultivo de camarão. Dissertação de mestrado. Oceanografia biológica. Rio Grande, RS, 54 pp. Search in Google Scholar

Van Nguyen N., Hoang L., Van Khanh T., Duy Hai P., Hung L.T. (2018). Utilization of fermented soybean meal for fishmeal substitution in diets of Pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr., 24: 1092–1100.10.1111/anu.12648 Search in Google Scholar

Vidal J.M.A., Pessôa M.N.D.C., Santos F.L.D., Mendes P.D.P., Mendes M.S. (2018). Probiotic potential of Bacillus cereus against Vibrio spp. in post-larvae shrimps. Rev. Caatinga, 31: 495–503.10.1590/1983-21252018v31n226rc Search in Google Scholar

Wilcox J.A., Tracy P.L., Marcus N.H. (2006). Improving live feeds: Effect of a mixed diet of copepod nauplii (Acartia tonsa) and rotifers on the survival and growth of first feeding larvae of the southern flounder, Paralichthys lethostigma. J. World Aquac. Soc., 37: 113–120.10.1111/j.1749-7345.2006.00014.x Search in Google Scholar

Xiong J., Dai W., Qi Q., Zhu J., Yang W., Li C. (2018). Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Microb. Ecol., 27: 3686–3699.10.1111/mec.14822 Search in Google Scholar

Xiong J., Xuan L., Yu W., Zhu J., Qiu Q., Chen J. (2019). Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ. Microbiol., 21: 1383–1394.10.1111/1462-2920.14578 Search in Google Scholar

Xiong J., Li X., Yan M., Lu J., Chen J. (2020). Comparable ecological processes govern the temporal succession of gut bacteria and micro eukaryotes as shrimp aged. Microb. Ecol., 80: 935–945.10.1007/s00248-020-01533-6 Search in Google Scholar

Zeng S., Khoruamkid S., Kongpakdee W., Wei D., Yu L., Wang H., Deng Z., Weng S., Huang Z., He J., Satapornvanit K. (2020). Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system. AMB Express, 10: 1–11.10.1186/s13568-020-01119-y Search in Google Scholar

Zubaidah E., Nurcholis M., Wulan S.N., Kusuma A. (2012). Comparative study on synbiotic effect of fermented rice bran by probiotic lactic acid bacteria Lactobacillus casei and newly isolated Lactobacillus plantarum B2 in wistar rats. APCBEE Procedia, 2: 170–177.10.1016/j.apcbee.2012.06.031 Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin