1. bookVolumen 22 (2022): Heft 3 (July 2022)
25 Nov 2011
4 Hefte pro Jahr
Uneingeschränkter Zugang

Specific importance of low level dietary supplementation of Lypomyces starkeyi CB1807 yeast strain in red sea bream (Pagrus major)

Online veröffentlicht: 19 Jul 2022
Volumen & Heft: Volumen 22 (2022) - Heft 3 (July 2022)
Seitenbereich: 1073 - 1085
Eingereicht: 26 Aug 2021
Akzeptiert: 04 Jan 2022
25 Nov 2011
4 Hefte pro Jahr

Abu-Elala N.M., Younis N.A., AbuBakr H.O., Ragaa N.M., Borges L.L., Bonato M.A. (2018). Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. Egypt. J. Aquat. Res., 44: 333–341. Search in Google Scholar

Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol., 45: 733–741. Search in Google Scholar

Aliahmat N.S., Noor M.R.M., Yusof W.J.W., Makpol S., Ngah W.Z.W., Yusof Y.A.M. (2012). Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice. Clinics, 67: 1447–1454. Search in Google Scholar

Allameh S.K., Ringø E., Yusoff F.M., Daud H.M., Ideris A. (2017). Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short-chain fatty acid production, immune system response and disease resistance of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquacult. Nutr., 23: 331–338. Search in Google Scholar

Anderson D.P., Siwicki A.K. (1995). Basic hematology and serology for fish health programs. Fish Health Section, Asian Fisheries Society, Manila, Philippines. Search in Google Scholar

Andriamialinirina H.J.T., Irm M., Taj S., Lou J.H., Jin M., Zhou Q. (2020). The effects of dietary yeast hydrolysate on growth, hematology, antioxidant enzyme activities and non-specific immunity of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 101: 168–175. Search in Google Scholar

AOAC (1990). Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist, Washington DC. Search in Google Scholar

Azócar L., Ciudad G., Heipieper H.J., Navia R. (2010). Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol., 88: 621–636. Search in Google Scholar

Balami S., Sharma A., Karn R. (2019). Significance of nutritional value of fish for human health. Malaysian J. Halal Res., 2: 32–34. Search in Google Scholar

Barton B.A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp., Biol., 42: 517–525. Search in Google Scholar

Blomqvist J., Pickova J., Tilami S.K., Sampels S., Mikkelsen N., Brandenburg J., Sandgren M., Passoth V. (2018). Oleaginous yeast as a component in fish feed. Sci. Rep., 8: 15945. Search in Google Scholar

Bowman S.M., Free S.J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28: 799–808. Search in Google Scholar

Brandenburg J., Blomqvist J., Pickova J., Bonturi N., Sandgren M., Passoth V. (2016). Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast, 33: 451–462. Search in Google Scholar

Brandenburg J., Poppele I., Blomqvist J., Puke M., Pickova J., Sandgren M., Rapoport A., Vedernikovs N., Passoth V. (2018). Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Appl. Microbiol. Biotechnol., 102: 6269–6277. Search in Google Scholar

Castro C., Pérez-Jiménez A., Coutinho F., Pousão-Ferreira P., Brandão T.M., Oliva-Teles A., Peres H. (2013). Digestive enzymes of meagre (Argyrosomus regius) and white seabream (Diplodus sargus). Effects of dietary brewer’s spent yeast supplementation. Aquaculture, 416: 322–327. Search in Google Scholar

Cecchini S., Terova G., Caricato G., Saroglia M. (2000). Lysozyme activity in embryos and larvae of sea bass (Dicentrarchus labrax L.), spawned by broodstocks fed with vitamin C enriched diets. Bull. Eur. Assoc. Fish Pathol., 20: 120–124. Search in Google Scholar

Cerezuela R., Guardiola F.A., González P., Meseguer J., Esteban M.Á. (2012). Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol., 33: 342–349. Search in Google Scholar

Chauhan A., Singh R. (2019). Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis, 77: 99–113. Search in Google Scholar

Cuesta A., Meseguer J., Esteban M.A. (2004). Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet. Immunol. Immunopathol., 101: 203–210. Search in Google Scholar

Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture, 454: 243–251. Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2015 a). Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture, 442: 29–36.10.1016/j.aquaculture.2015.02.005 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2015 b). Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol., 45: 33–42.10.1016/j.fsi.2015.01.03325661844 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016 a). Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol., 54: 266–275.10.1016/j.fsi.2016.04.01727095173 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016 b). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquacult. Nutr., 22: 923–932.10.1111/anu.12314 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Dossou S., Moss A.S. (2016 c). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.10.1016/j.fsi.2015.12.04726766177 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Yokoyama S., Wang W.-L., Yukun Z., Olivier A. (2017 a). Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol. Biochem., 43: 179–192.10.1007/s10695-016-0277-427542150 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Moss A.S., Dossou S., Wei H. (2017 b). Dietary supplementation of β-glucan improves growth performance, the innate immune response and stress resistance of red sea bream, Pagrus major. Aquacult. Nutr., 23: 148–159.10.1111/anu.12376 Search in Google Scholar

Dawood M.A.O., Koshio S., El-Sabagh M., Billah M.M., Zaineldin A.I., Zayed M.M., Omar A.A.E.D. (2017 c). Changes in the growth, humoral and mucosal immune responses following β-glucan and vitamin C administration in red sea bream, Pagrus major. Aquaculture, 470: 214–222.10.1016/j.aquaculture.2016.12.036 Search in Google Scholar

Dawood M.A.O., Koshio S., Angeles M. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974. Search in Google Scholar

Dawood M.A.O., Magouz F.I., Salem M.F.I., Abdel-daim H.A. (2019 a). Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture, 505: 127–136.10.1016/j.aquaculture.2019.02.053 Search in Google Scholar

Dawood M.A.O., Koshio S., Abdel Daim M.M., Van Doan H. (2019 b). Probiotic application for sustainable aquaculture. Rev. Aquacult., 11: 907–924.10.1111/raq.12272 Search in Google Scholar

Dimitroglou A., Merrifield D.L., Moate R., Davies S.J., Spring P., Sweetman J., Bradley G. (2009). Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Anim. Sci., 87: 3226–3234. Search in Google Scholar

Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., El-Hais A.M., Olivier A. (2018 a). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture, 490: 228–235.10.1016/j.aquaculture.2018.02.010 Search in Google Scholar

Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., Olivier A., Zaineldin A.I. (2018 b). Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immunol., 75: 253–262.10.1016/j.fsi.2018.01.03229360542 Search in Google Scholar

El Basuini M.F., El-Hais A.M., Dawood M.A.O., Abou-Zeid A.E.S., EL-Damrawy S.Z., Khalafalla M.S., Koshio S., Ishikawa M., Dossou S. (2016). Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture, 455: 32–40. Search in Google Scholar

El Basuini M.F., El-Hais A.M., Dawood M.A.O., Abou-Zeid A.E.-S., EL-Damrawy S.Z., Khalafalla M.S., Koshio S., Ishikawa M., Dossou S. (2017). Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquacult. Nutr., 23: 1329–1340. Search in Google Scholar

El Basuini M.F., Shahin S.A., Teiba I.I., Zaki M.A.A., El-Hais A.M., Sewilam H., Almeer R., Abdelkhalek N., Dawood M.A.O. (2021). The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture, 531: 735862. Search in Google Scholar

Góth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta., 196: 143–151. Search in Google Scholar

Hammer O., Harper D., Ryan P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron., 4: 1–9. Search in Google Scholar

Hassaan M.S., Mahmoud S.A., Jarmolowicz S., El-Haroun E.R., Mohammady E.Y., Davies S.J. (2018). Effects of dietary baker’s yeast extract on the growth, blood indices and histology of Nile tilapia (Oreochromis niloticus L.) fingerlings. Aquacult. Nutr., 24: 1709–1717. Search in Google Scholar

Hatlen B., Berge G.M., Odom J.M., Mundheim H., Ruyter B. (2012). Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture, 364: 39–47. Search in Google Scholar

Hoseinifar S.H., Sun Y.Z., Zhou Z., Van Doan H., Davies S.J., Harikrishnan R. (2020). Boosting immune function and disease bio-control through environment-friendly and sustainable approaches in finfish aquaculture: herbal therapy scenarios. Rev. Fish. Sci. Aquacult., 28: 303–321. Search in Google Scholar

Hossain M.S., Koshio S., Ishikawa M., Yokoyama S., Sony N.M., Dawood M.A.O., Kader M.A., Bulbul M., Fujieda T. (2016). Efficacy of nucleotide related products on growth, blood chemistry, oxidative stress and growth factor gene expression of juvenile red sea bream, Pagrus major. Aquaculture, 464: 8–16. Search in Google Scholar

Huang H.N., Su B.C., Tsai T.Y., Rajanbabu V., Pan C.Y., Chen J.Y. (2020). Dietary supplementation of recombinant tilapia piscidin 4-expressing yeast enhances growth and immune response in Lates calcarifer. Aquacult. Rep., 16: 100254. Search in Google Scholar

Huyben D., Boqvist S., Passoth V., Renström L., Allard Bengtsson U., Andréoletti O., Kiessling A., Lundh T., Vågsholm I. (2018). Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Vet. Scand., 60: 1–5. Search in Google Scholar

Islam S.M., Rohani M.F., Shahjahan M. (2021). Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquacult. Rep., 21: 100800. Search in Google Scholar

Jahan N., Islam S.M., Rohani M.F., Hossain M.T., Shahjahan M. (2021). Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology. Aquaculture, 545: 737243. Search in Google Scholar

Kader M.A., Koshio S., Ishikawa M., Yokoyama S., Bulbul M. (2010). Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture, 308: 136–144. Search in Google Scholar

Kader M.A., Bulbul M., Koshio S., Ishikawa M., Yokoyama S., Nguyen B.T., Komilus C.F. (2012). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 350: 109–116. Search in Google Scholar

Kim D.H., Lipton D., Choi J.Y. (2012). Analyzing the economic performance of the red sea bream Pagrus major offshore aquaculture production system in Korea. Fish Sci., 78: 1337–1342. Search in Google Scholar

Kumari J., Sahoo P.K. (2005). Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish Clarias batrachus. Fish Shellfish Immunol., 19: 307–316. Search in Google Scholar

Liang J.Y., Chien Y.H. (2013). Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponics system. Int. Biodeterior. Biodegrad., 85: 693–700. Search in Google Scholar

Lieke T., Meinelt T., Hoseinifar S.H., Pan B., Straus D.L., Steinberg C.E. (2020). Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquacult., 12: 943–965. Search in Google Scholar

Lygren B., Hjeltnes B., Waagbø R. (2001). Immune response and disease resistance in Atlantic salmon (Salmo salar L.) fed three levels of dietary vitamin E and the effect of vaccination on the liver status of antioxidant vitamins. Aquacult. Int., 9: 401–411. Search in Google Scholar

Ma T., Tu Y., Zhang N., Guo J., Deng K., Zhou Y., Yun Q., Diao Q. (2015). Effects of dietary yeast β-glucan on nutrient digestibility and serum profiles in pre-ruminant Holstein calves. J. Integr. Agric., 14: 749–757. Search in Google Scholar

Magnadóttir B. (1998). Comparison of immunoglobulin (IgM) from four fish species. Icel. Agric. Sci., 12: 47–59. Search in Google Scholar

Magnadottir B. (2010). Immunological control of fish diseases. Mar. Biotechnol., 12: 361–379. Search in Google Scholar

Mansour A.T., Esteban M.Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209. Search in Google Scholar

Margono B.A., Potapov P.V, Turubanova S., Stolle F., Hansen M.C. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang., 4: 730–735. Search in Google Scholar

Martínez-Álvarez R.M., Morales A.E., Sanz A. (2005). Antioxidant defences in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish., 15: 75–88. Search in Google Scholar

Meena D.K., Das P., Kumar S., Mandal S.C., Prusty A.K., Singh S.K., Akhtar M.S., Behera, B.K., Kumar K., Pal A.K., Mukherjee S.C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457. Search in Google Scholar

Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M. Ringø E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1–18. Search in Google Scholar

Metailler R., Huelvan C. (1993). Use of yeasts in the diet of juvenile sea bass (Dicentrarchus labrax). Colloques-Inra, 61: 945–945. Search in Google Scholar

Miyazaki T. (1998). A simple method to evaluate respiratory burst activity of blood phagocytes from Japanese flounder. Fish Pathol., 33: 141–142. Search in Google Scholar

Morganti P., Bruno C., Guarneri F., Cardillo A., Del Ciotto P., Valenzano F. (2002). Role of topical and nutritional supplement to modify the oxidative stress. Int. J. Cosmet. Sci., 24: 331–339. Search in Google Scholar

Mzengereza K., Ishikawa M., Koshio S., Yokoyama S., Yukun Z., Shadrack R.S., Seo S., Kotani T., Dossou S., Basuini M.F.E., Dawood M.A. (2021). Growth performance, growth-related genes, digestibility, digestive enzyme activity, immune and stress responses of de novo camelina meal in diets of red seabream (Pagrus major). Animals, 11: 3118. Search in Google Scholar

Nagai H., Aoki M., Shimazawa T., Yakuo I., Koda A., Kasahara M. (1989). Effect of OKY-046 and ONO-3708 on liver injury in mice. Jpn. J. Pharmacol., 51: 191–198. Search in Google Scholar

Navarrete P., Tovar-Ramírez D. (2014). Use of yeasts as probiotics in fish aquaculture. Sustainable Aquacult. Techn., 1: 135–172. Search in Google Scholar

Ochsenreither K., Glück C., Stressler T., Fischer L., Syldatk C. (2016). Production strategies and applications of microbial single cell oils. Front. Microbiol., 7: 1539. Search in Google Scholar

Oliva-Teles A. (2012). Nutrition and health of aquaculture fish. J. Fish Dis., 35: 83–108. Search in Google Scholar

Oliva-Teles A., Gonçalves P. (2001). Partial replacement of fishmeal by brewer’s yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 202: 269–278. Search in Google Scholar

Olstorpe M., Pickova J., Kiessling A., Passoth V. (2014). Strain- and temperature-dependent changes of fatty acid composition in Wickerhamomyces anomalus and Blastobotrys adeninivorans. Biotechnol. Appl. Biochem., 61: 45–50. Search in Google Scholar

Ortuño J., Cuesta A., Rodríguez A., Esteban M.A., Meseguer J. (2002). Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet. Immunol. Immunopathol., 85: 41–50. Search in Google Scholar

Oswald A.T.O., Ishikawa M., Koshio S., Yokoyama S., Moss A.S., Serge D. (2019). Nutritional evaluation of Nannochloropsis powder and lipid as alternative to fish oil for kuruma shrimp, Marsupenaeus japonicus. Aquaculture, 504: 427–436. Search in Google Scholar

Øverland M., Skrede A. (2017). Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J. Sci. Food Agric., 97: 733–742. Search in Google Scholar

Ozório R.O.A., Portz L., Borghesi R., Cyrino J.E.P. (2012). Effects of dietary yeast (Saccharomyces cerevisia) supplementation in practical diets of tilapia (Oreochromis niloticus). Animal, 2: 16–24. Search in Google Scholar

Peppler H. (1982). Yeast extracts. Economic Microbiology ed. London: Academic Press. Search in Google Scholar

Ren T., Koshio S., Ishikawa M., Yokoyama S., Micheal F.R., Uyan O., Tung H.T. (2007). Influence of dietary vitamin C and bovine lactoferrin on blood chemistry and non-specific immune responses of Japanese eel, Anguilla japonica. Aquaculture, 267: 31–37. Search in Google Scholar

Rimoldi S., Gini E., Koch J.F.A., Iannini F., Brambilla F., Terova G. (2020). Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet. Res., 16: 1–13. Search in Google Scholar

Ringø E., Van Doan H., Lee S.H., Soltani M., Hoseinifar S.H., Harikrishnan R. Song S.K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J. Appl. Microbiol., 129: 116–136. Search in Google Scholar

Robbins E.A., Seeley R.D. (1977). Cholesterol lowering effect of dietary yeast and yeast fractions. J. Food Sci., 42: 694–698. Search in Google Scholar

Rodrigues M.V., Zanuzzo F.S., Koch J.F.A., de Oliveira C.A.F., Sima P., Vetvicka V. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules, 25: 5378. Search in Google Scholar

Ruth M.R., Field C.J. (2013). The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol., 4: 1–10. Search in Google Scholar

Sahlmann C., Djordjevic B., Lagos L., Mydland L.T., Morales-Lange B., Øvrum Hansen J., Ånestad R., Mercado L., Bjelanovic M., Press C.M., Øverland M. (2019). Yeast as a protein source during smoltification of Atlantic salmon (Salmo salar L.), enhances performance and modulates health. Aquaculture, 513: 734396. Search in Google Scholar

Salinas I., Abelli L., Bertoni F., Picchietti S., Roque A., Furones D., Cuesta A., Meseguer J., Esteban M.A. (2008). Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 25: 114–123. Search in Google Scholar

Salini M., Irvin S., Bourne N., Blyth D., Cheers S., Habilay N., Glencross B. (2015). Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat. Aquaculture, 449: 48–57. Search in Google Scholar

Shadrack R.S., Manabu I., Koshio S., Waqalevu V. (2021). Physiological condition, digestive enzyme, blood haemato-biochemistry, antioxidant, immune and stress response of juvenile red sea bream (Pagrus major) fed diets containing spent oleaginous yeast. Aquacult. Rep., 21: 100913. Search in Google Scholar

Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother, 60: 502–507. Search in Google Scholar

Singh S.P., Janecki A.J., Srivastava S.K., Awasthi S., Awasthi Y.C., Xia S.J., Zimniak P. (2002). Membrane association of glutathione S-transferase mGSTA4-4, an enzyme that metabolizes lipid peroxidation products. J. Biol. Chem., 277: 4232–4239. Search in Google Scholar

Sitepu I.R., Garay L.A., Sestric R., Levin D., Block D.E., German J.B., Boundy-Mills K.L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol. Adv., 32: 1336–1360. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Sohet F.M., Neyrinck A.M., Pachikian B.D., de Backer F.C., Bindels L.B., Niklowitz P., Menke T., Cani P.D., Delzenne N.M. (2009). Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem. Pharmacol., 78: 1391–1400. Search in Google Scholar

Soleimani N., Hoseinifar S.H., Merrifield D.L., Barati M., Abadi Z.H. (2012). Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol., 32: 316–321. Search in Google Scholar

Song Q., Xiao Y., Xiao Z., Liu T., Li J., Li P., Han F. (2021). Lysozymes in Fish. J. Agric. Food Chem., 69: 15039–15051. Search in Google Scholar

Sprague M., Dick J.R., Tocher D.R. (2016). Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep., 6: 21892. Search in Google Scholar

Sugama K. (2002). Genetics and breeding of marine finfish culture in Asia. Fish. Sci., 68: 718–721. Search in Google Scholar

Sun S., Ge X., Zhu J., Xuan F., Jiang X. (2014). Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure. Comp. Biochem. Physiol. - C Toxicol. Pharmacol., 159: 69–77. Search in Google Scholar

Sun Y.Z., Yang H.L., MA R.L., Song K., LI J.S. (2012). Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquacult. Nutr., 18: 281–289. Search in Google Scholar

Sutthi N., Thaimuangphol W. (2020). Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions. Iran. J. Fish. Sci., 19: 1428–1446. Search in Google Scholar

Tacon A.G.J., Hasan M. R., Metian M. (2011). Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564, Rome, 2011, 87 pp. Search in Google Scholar

Takagi S., Shimeno S., Hosokawa H., Ukawa M. (2001). Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fish. Sci., 67: 1088–1096. Search in Google Scholar

Takaku H., Matsuzawa T., Yaoi K., Yamazaki H. (2020). Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl. Microbiol. Biotechnol., 104: 6141–6148. Search in Google Scholar

Taylor P.R., Tsoni S.V., Willment J.A., Dennehy K.M., Rosas M., Findon H., Haynes K., Steele C., Botto M., Gordon S., Brown G.D. (2007). Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol., 8: 31–38. Search in Google Scholar

Teshima S.I., Kanazawa A., Yamashita M. (1986). Dietary value of several proteins and supplemental amino acids for larvae of the prawn Penaeus japonicus. Aquaculture, 51: 225–235. Search in Google Scholar

Tocher D.R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449: 94–107. Search in Google Scholar

Uyan O., Koshio S., Teshima S., Ishikawa M., Michael F.R., Ren T., Laining A. (2007). Effects of tuna muscle powder in diet on the growth and phosphorus loading of juvenile red sea bream, Pagrus major. Aquacult. Sci., 55: 29–40. Search in Google Scholar

Van Doan H., Hoseinifar S.H., Ringø E., Ángeles Esteban M., Dadar M., Dawood M.A.O., Faggio C. (2020). Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquacult., 28: 16–42. Search in Google Scholar

Vermeulen N.P.E., Bessems J.G.M., Van De Straat R. (1992). Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention. Drug Metab. Rev., 24: 367–407. Search in Google Scholar

Vetvicka V., Vannucci L., Sim P. (2013). The effects of β-glucan on fish immunity. N. Am. J. Med. Sci., 5: 580–588. Search in Google Scholar

Xu L., Ran C., He S., Zhang J., Hu J., Yang Y., Du Z., Yang Y., Zhou Z. (2015). Effects of dietary yeast nucleotides on growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Anim. Nutr., 1: 244–251. Search in Google Scholar

Yeganeh S., Adel M., Nosratimovafagh A., Dawood M.A.O. (2021). The effect of Lactococcus lactis subsp. lactis PTCC 1403 on the growth performance, digestive enzymes activity, antioxidative status, immune response, and disease resistance of rainbow trout (Oncorhynchus mykiss). Prob. Antimicrob. Prot., 13: 1723–1733. Search in Google Scholar

Younes S., Bracharz F., Awad D., Qoura F., Mehlmer N., Brueck T. (2020). Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioprocess Biosyst. Eng., 43: 1629–1638. Search in Google Scholar

Yu H.H., Han F., Xue M., Wang J., Tacon P., Zheng Y.H., Wu X.F., Zhang Y.J. (2014). Efficacy and tolerance of yeast cell wall as an immunostimulant in the diet of Japanese seabass (Lateolabrax japonicus). Aquaculture, 432: 217–224. Search in Google Scholar

Zaineldin A.I., Hegazi S., Koshio S., Ishikawa M., Bakr A., El-Keredy A.M., Dawood M.A.O., Dossou S., Wang W., Yukun Z. (2018). Bacillus subtilis as probiotic candidate for red sea bream: growth performance, oxidative status, and immune response traits. Fish Shellfish Immunol., 79: 303–312. Search in Google Scholar

Zaineldin A.I., Hegazi S., Koshio S., Ishikawa M., Dawood M.A.O., Dossou S., Yukun Z., Mzengereza K. (2021). Singular effects of Bacillus subtilis C-3102 or Saccharomyces cerevisiae type 1 on the growth, gut morphology, immunity, and stress resistance of red sea bream (Pagrus major). Ann. Anim. Sci., 21: 589–608. Search in Google Scholar

Zhang P., Yang F., Hu J., Han D., Liu H., Jin J., Yang Y., Yi J., Zhu X., Xie S. (2020). Optimal form of yeast cell wall promotes growth, immunity and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Rep., 18: 100465. Search in Google Scholar

Empfohlene Artikel von Trend MD