1. bookVolumen 22 (2022): Heft 3 (July 2022)
25 Nov 2011
4 Hefte pro Jahr
Uneingeschränkter Zugang

The effect of the application of diets with varied proportions of arginine and lysine on biochemical and antioxidant status in Turkeys

Online veröffentlicht: 19 Jul 2022
Volumen & Heft: Volumen 22 (2022) - Heft 3 (July 2022)
Seitenbereich: 1041 - 1055
Eingereicht: 26 May 2021
Akzeptiert: 06 Oct 2021
25 Nov 2011
4 Hefte pro Jahr

Alagawany M., Elnesr S.S., Farag M.R., Tiwari R., Yatoo M.I., Karthik K., Michalak I., Dhama K. (2020). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health – a comprehensive review. Vet. Q., 41: 1–29. Search in Google Scholar

Atakisi O., Atakisi E., Kart A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight and blood biochemical values in Japanese quails. Biol. Trace Elem. Res., 132: 136–143. Search in Google Scholar

British United Turkeys (BUT) (2013). Aviagen Turkeys. Management guidelines for raising commercial turkeys. Retrieved from https://www.aviagenturkeys.com/media/183481/aviagencommercialguide.pdf. Accessed October, 2013. Search in Google Scholar

Bulbul T., Bozkurt Z., Ulutas E., Yilmaz O., Bulbul A. (2013). The effect of L-Arginine on growth performance, some serum bio-chemical parameters and duodenal motility in broilers. Kafkas. Univ. Vet. Fak. Derg., 19: 821–827. Search in Google Scholar

Chamruspollert M., Pesti G.M., Bakalli R.I. (2002). Dietary interrelationships among arginine, methionine and lysine in young broiler chicks. Brit. J. Nutr., 88: 655–660. Search in Google Scholar

Civitelli R., Villareal D.T., Agnusdei D., Nardi P., Avioli L.V., Gennari C. (1992). Dietary L-lysine and calcium metabolism in humans. Nutrition., 8: 400–405. Search in Google Scholar

Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Ruiz-Feria C.A., Adibmoradi M., Nourijelyani K., Mohamadnejad F. (2014). The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. Brit. Poultry Sci., 55: 81–88. Search in Google Scholar

Fico M.E., Hassan A.S., Milner J.A. (1982). The influence of excess lysine on urea cycle operation and pyrimidine biosynthesis. J. Nutr., 112: 1854–1861. Search in Google Scholar

Fouad A., El-Senousey H., Yang X., Yao J. (2013). Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 7: 1239–1245. Search in Google Scholar

Ghoreyshi S.M., Omri B., Chalghoumi R., Bouyeh M., Seidavi A., Dadashbeiki M., Lucarini M., Durazzo A., van den Hoven R., Santini A. (2019). Effects of dietary supplementation of L-Carnitine and excess lysine-methionine on growth performance, carcass characteristics, and immunity markers of broiler chicken. Animals (Basel), 9: 362. Search in Google Scholar

Golzar Adabi S.H., Cooper R.G., Ceylan N., Corduk M. (2011). L-carnitine and its functional effects in poultry nutrition. World’s Poultry Sci. J., 67: 277–296. Search in Google Scholar

Handique B., Saikia G., Dowarah R., Saikia B.N., Tamuly S. (2019). Effect of supplementation of synthetic lysine and methionine on serum biochemical profile, carcass characteristics and meat composition in broiler chicken. Indian J. Anim. Nutr., 36: 40–46. Search in Google Scholar

Hung L.T., Thu Lan L.T., Phong N.H., Hong Nhan N.T., Ngu N.T. (2020). Effects of lysine supplementation on growth of Noi broilers. Livest. Res. Rural., 32: 53. Search in Google Scholar

Ishii T., Shibata K., Kai S., Noguchi K., Omar Hendawy A., Fujimura S., Sato K. (2019). Dietary supplementation with lysine and threonine modulates the performance and plasma metabolites of broiler chicken. J. Poultry Sci., 56: 204–211. Search in Google Scholar

Jankowski J., Mikulski D., Mikulska M., Ognik K., Całyniuk Z., Mróz E., Zduńczyk Z. (2020 a). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Sci., 99: 1028–1037.10.1016/j.psj.2019.10.008758764132036960 Search in Google Scholar

Jankowski J., Ognik K., Konieczka P., Mikulski D. (2020 b). Effect of different level of arginine and methionine in a high-lysine diet on the immune status, performance and carcass traits of turkeys. Poultry Sci., 99: 4730–4740.10.1016/j.psj.2020.06.039759810832988507 Search in Google Scholar

Jia H., He T., Yu H., Zeng X., Zhang S., Ma W., Zhang J., Qiao S., Ma X. (2019). Effects of L-lysine·H2SO4 product on the intestinal morphology and liver pathology using broiler model. J. Anim. Sci. Biotechnol., 10: 10. Search in Google Scholar

Khajali F., Wideman R.F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World’s Poultry Sci. J., 66: 751–766. Search in Google Scholar

Khatun M.J., Loh T.C., Foo H.L., Khan M.K.I. (2018). Role of amino acid arginine for broiler production: a review. J. Eng. Sci., 2: 01–06. Search in Google Scholar

Konieczka P., Mikulski D., Ognik K., Juśkiewicz J., Zduńczyk Z., Jankowski J. (2021). Increased dietary inclusion levels of lysine are more effective than arginine in supporting the functional status of the gut in growing turkeys. Animals, 11: 2351. Search in Google Scholar

Kwo Y., Cohen S.M., Lim J.K. (2017). ACG Clinical guideline: Evaluation of abnormal liver chemistries. Am. J. Gastroenterol., 112: 18–35. Search in Google Scholar

Liao S.F., Wang T., Regmi N. (2015). Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. Springerplus, 4: 147. Search in Google Scholar

Lin H.Y., Chen C.C., Chen Y.J., Lin Y.Y., Mersmann H.J., Ding S.T. (2014). Enhanced amelioration of high-fat diet-induced fatty liver by docosahexaenoic acid and lysine supplementations. Biomed. Res. Int., 1–11.10.1155/2014/310981405563724967351 Search in Google Scholar

Maroufyan E., Kasim A., Hashemi S.R., Loh T.C., Bejo M.H. (2010). Change in growth performance and liver function enzymes of broiler chickens challenged with infectious bursal disease virus to dietary supplementation of methionine and threonine. Am. J. Anim. Vet. Sci., 5: 20–26. Search in Google Scholar

Miller A., Jedrzejczak W.W. (2001). Albumin – biological functions and clinical significance (in Polish). Postepy Hig. Med. Dosw., 55: 17–36. Search in Google Scholar

Nasr J., Kheiri F. (2011). Effect of different lysine levels on Arian broiler performances. Ital. J. Anim. Sci., 10: e32. Search in Google Scholar

NRC (1994). Nutritional Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington. Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271. Search in Google Scholar

Ognik K., Konieczka P., Mikulski D., Jankowski J. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet. Res., 51: 50. Search in Google Scholar

Ognik K., Calyniuk Z., Mikulski D., Stepniowska A., Konieczka P., Jankowski J. (2021 a). The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. J. Anim. Physiol. Anim. Nutr. (Berl.), 150: 108–118.10.1111/jpn.1343332815585 Search in Google Scholar

Ognik K., Mikulski D., Konieczka P., Tykałowski B., Krauze M., Stępniowska A., Nynca A., Jankowski J. (2021 b). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci. Rep., 11: 15975.10.1038/s41598-021-95529-y834241534354153 Search in Google Scholar

Ojediran T.K., Ojeniyi O., Ajayi A.F., Emiola I.A. (2018). Effect of varying dietary lysine on growth performance, nutrient digestibility, organ weight and carcass characteristics of broiler chickens. Nigerian J. Anim. Sci., 20: 432–439. Search in Google Scholar

Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O., Pirgozliev V., Adegbenjo A.A., Osho S.O., Alabi J.O., Li F., Liu H., Yao K., Xin W. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci., 198: 58–64. Search in Google Scholar

Ozsoy Y., Ozsoy M., Coskun T., Namlı K., Var A., Özyurt B. (2011). The effects of L-arginine on liver damage in experimental acute cholestasis an immunohistochemical study. HPB Surgery, 1–5.10.1155/2011/306069313248921760660 Search in Google Scholar

Rezende M., Mundim A., Fonseca B., Miranda R., Oliveira Jr W., Lellis C. (2017). Profile of serum metabolites and proteins of broiler breeders in rearing age. Rev. Bras. Cienc. Avic., 19: 583–586. Search in Google Scholar

Ruan D., Fouad A.M., Zhang Y.N., Wang S., Chen W., Xia W.G., Jiang S.Q., Yang L., Zheng C.T. (2019). Effects of dietary lysine on productivity, reproductive performance, protein and lipid metabolism-related gene expression in laying duck breeders. Poultry Sci., 98: 5734–5745. Search in Google Scholar

Silva L., Murakami A., Fernandes J., Dalla Rosa D., Urgnani J. (2012). Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Rev. Bras. Cienc. Avic., 14: 267–273. Search in Google Scholar

Sirathonpong O., Ruangpanit Y., Songserm O., Koo E.J., Attamangkune S. (2019). Determination of the optimum arginine: lysine ratio in broiler diets. Anim. Prod. Sci., 59: 1705–1710. Search in Google Scholar

Stępnik M. (2001). Molecular aspects of toxic effects of nitric oxide (in Polish). Med. Pr., 52: 375–381. Search in Google Scholar

Urdaneta-Rincon M., Leeson S. (2004). Effect of dietary crude protein and lysine on feather growth in chicks to twenty-one days of age. Poultry Sci., 83: 1713–1717. Search in Google Scholar

Wang B., Ishihara M., Egashira Y., Ohta T., Sanada H. (1999). Effects of various kinds of dietary amino acids on the hepatotoxic action of d-galactosamine in rats. Biosci. Biotechnol. Biochem., 63: 319–322. Search in Google Scholar

Wu G., Morris Jr S.M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J., 336: 1–17. Search in Google Scholar

Xu Y.Q., Guo Y.W., Shi B.L., Yan S.M., Guo X.Y. (2018). Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest. Sci., 209: 8–13. Search in Google Scholar

Yang H., Ju X., Wang Z., Yang Z., Lu J., Wang W. (2016). Effects of arginine supplementation on organ development, egg quality, serum biochemical parameters, and immune status of laying hens. Rev. Bras. Cienc. Avic., 18: 181–186. Search in Google Scholar

Zampiga M., Laghi L., Petracci M., Zhu C., Meluzzi A., Dridi S., Sirri F. (2018). Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotechnol., 9: 79. Search in Google Scholar

Zarghi H., Golian A., Yazdi FT. (2020). Effect of dietary sulphur amino acid levels and guanidinoacetic acid supplementation on performance, carcase yield and energetic molecular metabolites in broiler chickens fed wheat-soy diet. Ital. J. Anim. Sci., 19: 951–959. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo