Uneingeschränkter Zugang

Ex Situ Conservation and Genetic Rescue of Endangered Polish Cattle and Pig Breeds with the Aid of Modern Reproductive Biotechnology – A Review


Zitieren

Andrabi S. M., Maxwell W. M. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci., 99: 223–243.Search in Google Scholar

Arat S., Caputcu A. T., Akkoc T., Pabuccuoglu S., Sagirkaya H., Cirit U., Nak Y., Koban E., Bagis H., Demir K., (2011). Using cell banks as a tool in conservation programmes of native domestic breeds: the production of the first cloned Anatolian Grey cattle. Reprod. Fert. Develop., 23: 1012–1023.Search in Google Scholar

Babicz M., Hałabis M., Skałecki P., Domaradzki P., Litwińczuk A., Kropiwiec-Domańska K., Łukasik M. (2020). Breeding and performance potential of Puławska pigs – a review. Ann. Anim. Sci., 20: 343–354.Search in Google Scholar

Chi D., Zeng Y., Xu M., Si L., Qu X., Liu H., Li J. (2017). LC3-dependent autophagy in pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell. Reprogram., 19: 354–362.Search in Google Scholar

Cieślińska A., Fiedorowicz E., Zwierzchowski G., Kordulewska N., Jarmołowska B., Kostyra E. (2019). Genetic polymorphism of β-casein gene in Polish Red cattle – preliminary study of A1 and A2 frequency in genetic conservation herd. Animals, 9: 377.Search in Google Scholar

Deng M., Liu Z., Chen B., Wan Y., Yang H., Zhang Y., Cai Y., Zhou J., Wang F. (2020). Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos. Theriogenology, 148: 27–36.Search in Google Scholar

Folch J., Cocero M. J., Chesné P., Alabart J. L., Domínguez V., Cognié Y., Roche A., Fernández-Arias A., Martí J. I., Sánchez P., etal. (2009). First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 71: 1026–1034.Search in Google Scholar

Gajda B., Smorąg Z. (2002). Vitrification of cultured and non-cultured expanded and hatched blastocysts. Cryoletters, 23: 385–388.Search in Google Scholar

Glanzner W. G., Rissi V. B., de Macedo M. P., Mujica L. K. S., Gutierrez K., Bridi A., de Souza J. R. M., Gonçalves P. B. D., Bordignon V. (2018). Histone 3 lysine 4, 9, and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol. Reprod., 98: 742–751.Search in Google Scholar

Gogol P., Bryła M., Trzcińska M., Bochenek M. (2019). Quality parameters and fertility of ram semen cryopreserved in egg yolk and soybean lecithin supplemented extenders. Pol. J. Vet. Sci., 22: 177–179.Search in Google Scholar

Gómez M. C., Pope C. E. (2015). Cloning endangered felids by interspecies somatic cell nuclear transfer. Methods Mol. Biol., 1330: 133–152.Search in Google Scholar

Gómez M. C., Pope C. E., Ricks D. M., Lyons J., Dumas C., Dresser B. L. (2009). Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod. Fert. Develop., 21: 76–82.Search in Google Scholar

Gurgul A., Jasielczuk I., Semik-Gurgul E., Szmatoła T., Majewska A., Sosin-Bzducha E., Bugno-Poniewierska M. (2019). Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle. J. Appl. Genet., 60: 87–95.Search in Google Scholar

Jeong P. S., Sim B. W., Park S. H., Kim M. J., Kang H. G., Nanjidsuren T., Lee S., Song B. S., Koo D. B., Kim S. U. (2020). Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity. Int. J. Mol. Sci., 21: 4836.Search in Google Scholar

Knox R. V. (2015). The fertility of frozen boar sperm when used for artificial insemination. Reprod. Domest. Anim., 50 (Suppl. 2): 90–97.Search in Google Scholar

Lauvie A., Audiot A., Couix N., Casabianca F., Brives H., Verrier E. (2011). Diversity of rare breed management programs: Between conservation and development. Livest. Sci., 140: 161–170.Search in Google Scholar

Lee J., Lee Y., Lee G. S., Lee S. T., Lee E. (2019). Comparative study of the developmental competence of cloned pig embryos derived from spermatogonial stem cells and fetal fibroblasts. Reprod. Domest. Anim., 54: 1258–1264.Search in Google Scholar

Len J. S., Koh W. S. D., Tan S. H. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep., 39: BSR20191601.Search in Google Scholar

Leroy G., Gicquel E., Boettcher P., Besbes B., Furre S., Fernandez J., Danchin-Burge C., Alnahhas N., Baumung R. (2020). Coancestry rate’s estimate of effective population size for genetic variability monitoring. Conserv. Genet. Resour., 12: 275–283.Search in Google Scholar

Li Z., He X., Chen L., Shi J., Zhou R., Xu W., Liu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470.Search in Google Scholar

Litwińczuk Z., Chabuz W., Domaradzki P., Jankowski P. (2012). Slaughter value of young Polish Black-and-White, White-Backed, Polish Holstein-Friesian and Limousin bulls under semi-intensive fattening. Ann. Anim. Sci., 12: 159–168.Search in Google Scholar

Liu J., Westhusin M., Long C., Johnson G., Burghardt R., Kraemer D. (2010). Embryo production and possible species preservation by nuclear transfer of somatic cells isolated from bovine semen. Theriogenology, 74: 1629–1635.Search in Google Scholar

Magalhães L. C., Cortez J. V., Bhat M. H., Sampaio A. C. N. P. C., Freitas J. L. S., Duarte J. M. B., Melo L. M., Freitas V. J. F. (2020). In vitro development and mitochondrial gene expression in brown brocket deer (Mazama gouazoubira) embryos obtained by interspecific somatic cell nuclear transfer. Cell. Reprogram., 22: 208–216.Search in Google Scholar

Oh H. J., Kim M. K., Jang G., Kim H. J., Hong S. G., Park J. E., Park K., Park C., Sohn S. H., Kim D. Y., Shin N. S., Lee B. C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology, 70: 638–647.Search in Google Scholar

Olivera R., Moro L. N., Jordan R., Luzzani C., Miriuka S., Radrizzani M., Donadeu F. X., Vichera G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One, 11: e0164049.Search in Google Scholar

Polak G., Krupiński J., Martyniuk E., Calik J., Kawęcka A., Krawczyk J., Majewska A ., Sikora J., Sosin-Bzducha E., Szyndler-Nędza M., Tomczyk-Wrona I. (2021). The risk status of Polish local breeds under conservation programmes – new approach. Ann. Anim. Sci., 21: 125–140.Search in Google Scholar

Qu J., Wang X., Jiang Y., Lv X., Song X., He H., Huan Y. (2020). Optimizing 5-aza-2’-deoxycytidine treatment to enhance the development of porcine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming. Res. Vet. Sci., 132: 229–236.Search in Google Scholar

Qu P., Qing S., Liu R., Qin H., Wang W., Qiao F., Ge H., Liu J., Zhang Y., Cui W., Wang Y. (2017). Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS One, 12, e0174535.Search in Google Scholar

Rath D., Bathgate R., Rodriguez-Martinez H., Roca J., Strze ż ek J., Waberski D. (2009). Recent advances in boar semen cryopreservation. Soc. Reprod. Fertil., Suppl., 66: 51–66.Search in Google Scholar

Samiec M., Skrzyszowska M. (2010). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.Search in Google Scholar

Samiec M., Skrzyszowska M. (2018). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.Search in Google Scholar

Samiec M., Skrzyszowska M. (2021). Extranuclear inheritance of mitochondrial genome and epigenetic reprogrammability of chromosomal telomeres in somatic cell cloning of mammals. Int. J. Mol. Sci., 22: 3099.Search in Google Scholar

Samiec M., Skrzyszowska M., Opiela J. (2013). Creation of cloned pig embryos using contact- inhibited or serum-starved fibroblast cells analysed intravitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.Search in Google Scholar

Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141.Search in Google Scholar

Samiec M., Skrzyszowska M., Witarski W. (2020). Conservation of valuable genetic resources and restitution of endangered livestock breeds and species – potential targets of somatic cell cloning of mammals in livestock breeding practice (in Polish). Prz. Hod., 2: 1–4.Search in Google Scholar

Sampaio R. V., Sangalli J. R., De Bem T. H. C., Ambrizi D. R., Del Collado M., Bridi A., de Ávila A. C. F. C. M., Macabelli C. H., de Jesus Oliveira L., da Silveira J. C., Chiaratti M. R., Perecin F., Bressan F. F., Smith L. C., Ross P. J., Meirelles F. M. (2020). Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci. Rep., 10: 11493.Search in Google Scholar

Sawicka-Zugaj W., Chabuz W., Litwińczuk Z., Kasprzak-Filipek K. (2018). Evaluation of reproductive performance and genetic variation in bulls of the Polish White-Backed breed. Reprod. Domest. Anim., 53: 157–162.Search in Google Scholar

Selokar N. L., Saini M., Palta P., Chauhan M. S., Manik R., Singla S. K. (2014). Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One, 9: e90755.Search in Google Scholar

Song S. H., Lee K. L., Xu L., Joo M. D., Hwang J. Y., Oh S. H., Kong I. K. (2019). Production of cloned cats using additional complimentary cytoplasm. Anim. Reprod. Sci., 208: 106125.Search in Google Scholar

Srirattana K., Matsukawa K., Akagi S., Tasai M., Tagami T., Nirasawa K., Nagai T., Kanai Y., Parnpai R., Takeda K. (2011). Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim. Sci. J., 82: 236–243.Search in Google Scholar

Sun J., Cui K., Li Z., Gao B., Jiang J., Liu Q., Huang B., Shi D. (2020). Histone hyperacetylation may improve the preimplantation development and epigenetic status of cloned embryos. Reprod. Biol., 20: 237–246.Search in Google Scholar

Szarek J., Adamczyk K., Felenczak A. (2004). Polish Red cattle breeding: past and present. AGRI, 35: 21–35.Search in Google Scholar

Szulc K., Skrzypczak E., Panek A., Knecht D., Jankowska A., Sobek Z., Stanisławski D. (2011). Analysis of reproduction and litter performance of the Zlotnicka Spotted breed and its different crossbreeds. Ital. J. Anim. Sci., 10: e46.Search in Google Scholar

Takeda K. (2019). Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J. Reprod. Develop., 65: 485–489.Search in Google Scholar

Taweechaipaisankul A., Jin J. X., Lee S., Kim G. A., Suh Y. H., Ahn M. S., Park S. J., Lee B. Y., Lee B. C. (2019). Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J. Reprod. Develop., 65: 103–112.Search in Google Scholar

Trzcińska M., Bryła M. (2015). Apoptotic-like changes of boar spermatozoa in freezing media supplemented with different antioxidants. Pol. J. Vet. Sci., 18: 473–480.Search in Google Scholar

Trzcińska M., Bryła M. (2018). Patent No. PL228192-B1 for an invention entitled: ”Extender for cryoconservation of boar semen and the procedure of semen freezing”. https://grab.uprp.pl/sites/WynalazkiWzoryUzytkowe/Opisy/Patenty%20i%20Wzory%20uytkowe/228192_B1.pdf.Search in Google Scholar

Trzcińska M., Bryła M. (2021). A new sperm selection criterion for cryopreservation of boar semen. Ann. Anim. Sci., 21: 513–525.Search in Google Scholar

Trzcińska M., Bryła M., Gajda B., Gogol P. (2015). Fertility of boar semen cryopreserved in extender supplemented with butylated hydroxytoluene. Theriogenology, 83: 307–313.Search in Google Scholar

Tunstall T., Kock R., Vahala J., Diekhans M., Fiddes I., Armstrong J., Paten B., Ryder O. A., Steiner C. C. (2018). Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res., 28: 780–788.Search in Google Scholar

Veraguas D., Aguilera C., Echeverry D., Saez-Ruiz D., Castro F. O., Rodriguez-Alvarez L. (2020). Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology, 158: 148–157.Search in Google Scholar

Wang T., Li Z., Zheng D., Liu W., Huang P., Zeng Z., Xu C., Wang B., Wei J. (2020 a). Establishment and characterization of a fibroblast cell line from postmortem skin of an adult Chinese muntjac (Muntiacus reevesi). In Vitro Cell. Dev. Biol. Anim., 56: 97–102.10.1007/s11626-019-00422-831898011Search in Google Scholar

Wang X., Qu J., Li J., He H., Liu Z., Huan Y. (2020 b). Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions. Front. Genet., 11: 205.10.3389/fgene.2020.00205709349832256519Search in Google Scholar

Wani N. A., Vettical B. S., Hong S. B. (2017). First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One, 12: e0177800.Search in Google Scholar

Wells D. N., Misica P. M., Tervit H. R., Vivanco W. H. (1998). Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Fert. Develop., 10: 369–378.Search in Google Scholar

Wiater J., Samiec M., Skrzyszowska M., Lipiński D. (2021). Trichostatin A-assisted epigenomic modulation affects the expression profiles of not only recombinant human α1,2-fucosyltransferase and α-galactosidase A enzymes but also Galα1→3Gal epitopes in porcine bi-transgenic adult cutaneous fibroblast cells. Int. J. Mol. Sci., 22: 1386.Search in Google Scholar

Wood K. A., Stilman R. A., Hilton G. M. (2018). Conservation in a changing world needs predictive models. Anim. Conserv., 21: 87–88.Search in Google Scholar

Wu C. F., Zhang D. F., Zhang S., Sun L., Liu Y., Dai J. J. (2019). Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod. Domest. Anim., 54: 1604–1611.Search in Google Scholar

Xu L., Mesalam A., Lee K. L., Song S. H., Khan I., Chowdhury M. M. R., Lv W., Kong I. K. (2019). Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm. Cell. Reprogram., 21: 51–60.Search in Google Scholar

Yeste M. (2016). Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology, 85: 47–64.Search in Google Scholar

Yeste M. (2017). State-of-the-art of boar sperm preservation in liquid and frozen state. Anim. Reprod., 14: 69–81.Search in Google Scholar

Zhang L., Zhang Y., Han Z., Fang J., Chen H., Guo Z. (2019). Transcriptome analyses reveal effects of vitamin C-treated donor cells on cloned bovine embryo development. Int. J. Mol. Sci., 20: 2628.Search in Google Scholar

Zhao C., Shi J., Zhou R., He X., Yang H., Wu Z. (2018). DZNep and UNC0642 enhance in vitro developmental competence of cloned pig embryos. Reproduction, 157: 359–369.Search in Google Scholar

Zhou C., Wang Y., Zhang J., Su J., An Q., Liu X., Zhang M., Wang Y., Liu J., Zhang Y. (2019). H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J., 33: 4638–4652.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin