Uneingeschränkter Zugang

Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary


Zitieren

Armenti A., Zama A., Passantino L., Uzumcu M. (2008). Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol., 233: 286–296.10.1016/j.taap.2008.09.010Search in Google Scholar

Aydoğan M., Barlas N. (2006). Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 22: 455–460.10.1016/j.reprotox.2006.01.004Search in Google Scholar

Bendixen E., Danielsen M., Larsen K., Bendixen C. (2010). Advances in porcine genomics – a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genomics., 9: 208–219.10.1093/bfgp/elq004Search in Google Scholar

Bertho S., Pasquier J., Pan Q., Le Trionnaire G., Bobe J., Postlethwait J.H., Pailhoux E., Schartl M., Herpin A., Guiguen Y. (2016) Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev., 10: 111–129.10.1159/000447611Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Cervantes-Camacho I., Guerrero-Estévez S.M., López M.F., Alarcón-Hernández E., López-López E. (2020). Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodea atripinnis. J. Toxicol. Environ. Health A, 83: 95–112.10.1080/15287394.2020.1730282Search in Google Scholar

Cocquet J., Pailhoux E., Jaubert F., Servel N., Xia X., Pannetier M., De Baere E., Messiaen L., Cotinot C., Fellous M., Veitia R.A. (2002). Evolution and expression of FOXL2. J. Med. Genet., 39: 916–921.Search in Google Scholar

Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S., Ristaldi M.S., Marzella R., Rocchi M., Nicolino M., Lienhardt-Roussie A., Nivelon A., Verloes A., Schlessinger D., Gasparini P., Bonneau D., Cao A., Pilia G. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet., 27: 159–166.10.1038/84781Search in Google Scholar

Durlinger A.L., Gruijters M.J., Kramer P., Karels B., Ingraham H.A., Nachtigal M.W., Uilenbroek J.T., Grootegoed J.A., Themmen A.P. (2002). Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology, 143: 1076–1084.10.1210/endo.143.3.8691Search in Google Scholar

Elzaiat M., Todeschini A.L., Caburet S., Veitia R.A. (2017). The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin. Genet., 91: 173–182.10.1111/cge.12862Search in Google Scholar

Fleming N.I., Knower K.C., Lazarus K.A., Fuller P.J., Simpson E.R., Clyne C.D. (2010). Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE, 5: e14389.10.1371/journal.pone.0014389Search in Google Scholar

Georges A., Auguste A., Bessiere L., Vanet A., Todeschini A.L., Veitia R.A. (2014). FOXL2: a central transcription factor of the ovary. J. Mol. Endocrinol., 52: R17–33.10.1530/JME-13-0159Search in Google Scholar

Ghochani Y., Saini J.K., Mellon P.L., Thackray V.G. (2012). FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology, 153: 2023–2033.10.1210/en.2011-1763Search in Google Scholar

Grzesiak M., Knapczyk-Stwora K., Ciereszko R.E., Wieciech I., Slomczynska M. (2014). Alterations in luteal production of androstendione, testosterone, and estrone, but not estradiol, during mid- and late pregnancy in pigs: Effects of androgen deficiency. Theriogenology, 82: 720–733.10.1016/j.theriogenology.2014.06.005Search in Google Scholar

Hirano M., Wada-Hiraike O., Fu H., Akino N., Isono W., Sakurabashi A., Fukuda T., Morita Y., Tanikawa M., Miyamoto Y., Nishi Y., Yanase T., Harada M., Oishi H., Yano T., Koga K., Oda K., Kawana K., Fujii T., Osuga Y. (2017). The emerging role of FOXL2 in regulating the transcriptional activation function of estrogen receptor β: an insight into ovarian folliculogenesis. Reprod Sci., 24: 133–141.10.1177/1933719116651150Search in Google Scholar

Kim J.H., Yoon S., Park M., Park H.O., Ko J.J., Lee K., Bae J. (2011). Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene, 30: 1653–1663.10.1038/onc.2010.541Search in Google Scholar

Knapczyk-Stwora K., Durlej-Grzesiak M., Ciereszko R.E., Koziorowski M., Slomczynska M. (2013). Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction, 145: 265–276.10.1530/REP-12-0236Search in Google Scholar

Knapczyk-Stwora K., Grzesiak M., Ciereszko R.E., Czaja E., Koziorowski M., Slomczynska M. (2018). The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology, 113: 19–26.10.1016/j.theriogenology.2018.02.008Search in Google Scholar

Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J. Anim. Sci. Biotechnol., 10: 35.10.1186/s40104-019-0340-ySearch in Google Scholar

Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2020 a). Transcriptomic profiles of the ovaries from piglets neonatally exposed to 4-tert-octylphenol. Theriogenology, 153: 102–111.10.1016/j.theriogenology.2020.04.02732450468Search in Google Scholar

Knapczyk-Stwora K., Costa M.C., Gabriel A., Grzesiak M., Hubalewska-Mazgaj M., Witek P., Koziorowski M., Slomczynska M. (2020 b). A transcriptome approach evaluating effects of neonatal androgen and anti-androgen treatments on regulation of luteal function in sexually mature pigs. Anim. Reprod. Sci., 212: 106252.10.1016/j.anireprosci.2019.10625231864499Search in Google Scholar

Kummer V., Masková J., Zralý Z., Neca J., Simecková P., Vondrácek J., Machala M. (2008). Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett., 180: 212–221.10.1016/j.toxlet.2008.06.862Search in Google Scholar

Kuo F.T., Bentsi-Barnes I.K., Barlow G.M., Pisarska M.D. (2011). Mutant forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation. Endocrinology, 152: 3917–3929.10.1210/en.2010-0989Search in Google Scholar

Kuo F.T., Fan K., Bentsi-Barnes I., Barlow G.M., Pisarska M.D. (2012). Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction, 144: 485–494.10.1530/REP-11-0259Search in Google Scholar

Lauretta R., Sansone A., Sansone M., Romanelli F., Appetecchia M. (2019). Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. (Lausanne), 10: 178.10.3389/fendo.2019.00178Search in Google Scholar

Leung D.T.H., Fuller P.J., Chu S. (2016). Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int. J. Biochem. Cell. Biol., 72: 51–54.10.1016/j.biocel.2016.01.003Search in Google Scholar

Monniaux D., Clément F., Dalbiès-Tran R., Estienne A., Fabre S., Mansanet C., Monget P. (2014). The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: What is the link? Biol. Reprod., 90: 85.10.1095/biolreprod.113.117077Search in Google Scholar

Pannetier M., Fabre S., Batista F., Kocer A., Renault L., Jolivet G., Mandon-Pepin B., Cotinot C., Veitia R., Pailhoux E. (2006). FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol., 36: 399–413.10.1677/jme.1.01947Search in Google Scholar

Park M., Suh D.S., Lee K., Bae J. (2014). Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril., 102: 847–855.10.1016/j.fertnstert.2014.05.031Search in Google Scholar

Pepling M.E. (2012). Follicular assembly: Mechanisms of action. Reproduction, 143: 139–149.10.1530/REP-11-0299Search in Google Scholar

Stocco C. (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids, 73: 473–487.10.1016/j.steroids.2008.01.017Search in Google Scholar

Tyndall V., Broyde M., Sharpe R., Welsh M., Drake A.J., Mc Neilly A.S. (2012). Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction, 143: 21–33.10.1530/REP-11-0239Search in Google Scholar

Uda M., Ottolenghi C., Crisponi L., Garcia J.E., Deiana M., Kimber W., Forabosco A., Cao A., Schlessinger D., Pilia G. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet., 13: 1171–1181.10.1093/hmg/ddh124Search in Google Scholar

Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 139: 1130–1142.10.1016/j.cell.2009.11.021Search in Google Scholar

Uzumcu M., Kuhn P.E., Marano J.E., Armenti A.E., Passantino L. (2006). Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol., 191: 549–558.10.1677/joe.1.06592Search in Google Scholar

Wang D.S., Kobayashi T., Zhou L.Y., Paul-Prasanth B., Ijiri S., Sakai F., Okubo K., Morohashi K., Nagahama Y. (2007). Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol., 21: 712–725.10.1210/me.2006-0248Search in Google Scholar

Wang H., Wu T., Qin F., Wang L., Wang Z. (2012). Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish. Physiol. Biochem., 38: 653–664.10.1007/s10695-011-9548-2Search in Google Scholar

Wu J., Miao C., Lv X., Zhang Y., Li Y., Wang D. (2019). Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J. Steroid Biochem. Mol. Biol., 194: 105418.10.1016/j.jsbmb.2019.105418Search in Google Scholar

Zhao S., Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol., 12: 1047–1064.10.1089/cmb.2005.12.1047Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin