Zitieren

Bouchard-Mercier A., Rudkowska I., Lemieux S., Couture P., Vohl M. C. (2013). Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation. J. Lipid. Res., 54: 2866–2873.Search in Google Scholar

Bouwman A. C., Bovenhuis H., Visker M. H., van Arendonk J. A. (2011). Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet., 12: 43.Search in Google Scholar

Catillo G., Zappaterra M., Zambonelli P., Buttazzoni L., Steri R., Minelli G., Davoli R. (2020). Genome-wide association study identifies quantitative trait loci regions involved in muscle acidic profile in Large White heavy pigs. Animal, 10: 1–9.Search in Google Scholar

Chang T. H., Huang H. Y., Hsu J. B., Weng S. L., Horng J. T., Huang H.D (2013). An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 14, Suppl 2: S4.Search in Google Scholar

Cheng Y., Jia B., Wang Y., Wan S. (2017). miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep., 38: 3220–3226.Search in Google Scholar

Chypre M., Zaidi N., Smans K. (2012). ATP-citrate lyase: A mini-review. Biochem. Biophys. Res. Commun., 422: 1–4.Search in Google Scholar

Clop A., Ovilo C., Perez-Enciso M., Cercos A., Tomas A., Fernandez A., Coll A., Folch J. M., Barragan C., Diaz I., Oliver M. A., Varona L., Silio L., Sanchez A., Noguera J. L. (2003). Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome, 14: 650–656.Search in Google Scholar

Davoli R., Braglia S., Zappaterra M., Redeghieri C., Comella M., Zambonelli P. (2014). Association and expression analysis of porcine ACLY gene related to growth and carcass quality traits in Italian Large White and Italian Duroc breeds. Livest. Sci., 165: 1–7.Search in Google Scholar

Davoli R., Catillo G., Serra A., Zappaterra M., Zambonelli P., Zilio D. M., Steri R., Mele M., Buttazzoni L., Russo V. (2019). Genetic parameters of backfat fatty acids and carcass traits in Large White pigs. Animal, 13: 924–932.Search in Google Scholar

Gan B. L., Zhang L. J., Gao L., Ma F. C., He R. Q., Chen G., Ma J., Zhong J. C., Hu X. H. (2018). Downregulation of miR-224-5p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses. Oncol Rep., 40: 3171–3188.Search in Google Scholar

Grau R., Hamm R. (1953). Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften, 40: 29–30.Search in Google Scholar

Guy S. Z., Thomson P. C., Hermesch S. (2012). Selection of pigs for improved coping with health and environmental challenges: breeding for resistance or tolerance? Front. Genet., 3: 281.Search in Google Scholar

Kozomara A., Birgaoanu M., Griffiths-Jones S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res., 47: D155–D162.Search in Google Scholar

Li M. N., Guo X., Bao P. J., Wu X. Y., Ding X. Z., Chu M., Liang C. N., Yan P. (2016). Association of genetic variations in the ACLY gene with growth traits in Chinese beef cattle. Genet. Mol. Res., 15: gmr.15028250.Search in Google Scholar

Mac Nicol M. C., Cragle Ch. E., Mac Nicol A. M. (2011). Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle, 10: 39–44.Search in Google Scholar

Matoulkova E., Michalova E., Vojtesek B., Hrstka R. (2012). The role of the 3’ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol., 9: 563–576.Search in Google Scholar

Merks J. W., Mathur P. K., Knol E. F. (2012). New phenotypes for new breeding goals in pigs. Animal, 6: 535–543.Search in Google Scholar

Muñoz G., Alves E., Fernández A., Ovilo C., Barragán C., Estellé J., Quintanilla R., Folch J. M., Silió L., Rodríguez M. C., Fernández A. I. (2007). QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim Genet., 38: 639–646.Search in Google Scholar

Muñoz M., Fernández A. I., Benítez R., Pena R. N., Folch J. M., Rodríguez M. del. C., Silió L., Alves E. (2013). Disentangling two QTL on porcine chromosome 12 for backfat fatty acid composition. Anim Biotechnol., 24: 168–186.Search in Google Scholar

Oczkowicz M., Tyra M., Ropka-Molik K., Mucha A., Ż ukowski K. (2012). Effect of IGF2 intron3–g.3072G>A on intramuscular fat (IMF) content in pigs raised in Poland. Livest. Sci., 149: 301–304.Search in Google Scholar

Piórkowska K., Ż ukowski K., Ropka-Molik K., Tyra M. (2018). Deep sequencing of a QTL-rich region spanning 128–136 Mbp of pig chromosome 15. Gene, 647: 268–275.Search in Google Scholar

Piórkowska K., Małopolska M., Ropka-Molik K., Szyndler-Nędza M., Wiechniak A., Ż ukowski K., Lambert B., Tyra M. (2020). Evaluation of SCD, ACACA and FASN mutations: Effects on pork quality and other production traits in pigs selected based on RNASeq results. Animals (Basel), 10: pii: E123.Search in Google Scholar

Rayner K. J., Esau C. C., Hussain F. N., Mc Daniel A. L., Marshall S. M., van Gils J. M., Ray T. D., Sheedy F. J., Goedeke L., Liu X., Khatsenko O. G., Kaimal V., Lees C. J., Fernandez-Hernando C., Fisher E. A., Temel R. E., Moore K. J. (2011). Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 478: 404–407.Search in Google Scholar

Ropka-Molik K., Bereta A., Tyra M., Ró ż ycki M., Piórkowska K., Szyndler-Nędza M., Szmatoła T. (2014). Association of calpastatin gene polymorphisms and meat quality traits in pig. Meat Sci., 97: 143–150.Search in Google Scholar

Ropka-Molik K., Bereta A., Ż ukowski K., Tyra M., Piórkowska K., Ż ak G., Oczkowicz M. (2018). Screening for candidate genes related with histological microstructure, meat quality and carcass characteristic in pig based on RNA-seq data. Asian-Austral. J. Anim. Sci., 31: 1565–1574.Search in Google Scholar

Shang P., Li W., Liu G., Zhang J., Li M., Wu L., Wang K., Chamba Y. (2019). Identification of lncRNAs and genes responsible for fatness and fatty acid composition traits between the Tibetan and Yorkshire pigs. Int. J. Genomics, 5070975.10.1155/2019/5070975658922031281828Search in Google Scholar

Szyndler-Nędza M., Eckert R., Tyra M., Ż ak G., Szulc K., Blicharski T. (2019). Analysis of genetic parameters of carcass traits and daily gain of native breed pigs raised in Poland. Ann. Anim. Sci., 19: 595–604.Search in Google Scholar

Tyra M., Ż ak G. (2012). Analysis of relationships between fattening and slaughter performance of pigs and the level of intramuscular fat (IMF) in Longissimus dorsi muscle. Ann. Anim. Sci., 12: 169–178.Search in Google Scholar

Uemoto Y., Sato S., Ohnishi C., Terai S., Komatsuda A., Kobayashi E. (2009). The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan × Duroc crossbred population. J. Anim. Sci., 87: 3470–3476.Search in Google Scholar

URL1. http://www.fao.org/3/ca3880en/ca3880en.pdfSearch in Google Scholar

URL2. https://www.statista.com/statistics/237632/production-of-meat-worldwide-since-1990/Search in Google Scholar

Zaidi N., Swinnen J. V., Smans K. (2012). ATP-citrate lyase: a key player in cancer metabolism. Cancer Res., 72: 3709–3714.Search in Google Scholar

Ż ak G., Tyra M., Ró ż ycki M. (2008). Possibility of improvement of lean meat content of ham and loin in pigs by selection for growth and feed conversion rate. Anim. Sci. Pap. Rep., 26: 305–316.Search in Google Scholar

Ż ak G., Tyra M., Ró ż ycki M. (2009). Meatiness and fatness traits of Polish Large White and Polish Landrace pigs differing in fattening traits. Ann. Anim. Sci., 9: 297–304.Search in Google Scholar

Zhang X., Liang H., Kourkoumelis N., Wu Z., Li G., Shang X. (2020). Comprehensive analysis of lncRNA and miRNA expression profiles and ceRNA network construction in osteoporosis. Calcif. Tissue Int., 106: 343–354.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin