Uneingeschränkter Zugang

Saccharomyces cerevisiae Enhanced the Growth, Immune and Antioxidative Responses of European Seabass (Dicentrarchus labrax)


Zitieren

Abass D. A., Obirikorang K. A., Campion B. B., Edziyie R. E., Skov P. V. (2018). Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquacult. Int., 26: 843–855.Search in Google Scholar

Abd El-Kader M. F., El-Bab A. F. F., Abd-Elghany M. F., Abdel-Warith A. -W. A., Younis E. M., Dawood M. A. (2020). Selenium nanoparticles act potentially on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European seabass (Dicentrarchus labrax). Biol. Trace Elem. Res., 1–9.Search in Google Scholar

Abdel-Latif H. M. R., Abdel-Tawwab M., Khafaga A. F., Dawood M. A. O. (2020). Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 526: 735432.Search in Google Scholar

Abu-Elala N., Marzouk M., Moustafa M. (2013). Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int. J. Vet. Sci. Med., 1: 21–29.Search in Google Scholar

Abu-Elala N. M., Younis N. A., Abu Bakr H. O., Ragaa N. M., Borges L. L., Bonato M. A. (2020). Influence of dietary fermented Saccharomyces cerevisiae on growth performance, oxidative stress parameters, and immune response of cultured Oreochromis niloticus. Fish Physiol. Biochem., 46: 533–545.Search in Google Scholar

Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Dawood M. A., Abdel-Latif H. M. (2020). Benefits of dietary polyphenols and polyphenolrich additives to aquatic animal health: an overview. Rev. Fish. Sci. Aquac., 1–34.Search in Google Scholar

Blaxhall P. C., Daisley K. W. (1973). Routine haematological methods for use with fish blood. J. Fish Biol., 5: 771–781.Search in Google Scholar

Brewer M. S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. F., 10: 221–247.Search in Google Scholar

Cai W. -Q., Li S. -F., Ma J. -Y. (2004). Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia×male blue tilapia) to Aeromonas sobria. Aquaculture, 229: 79–87.Search in Google Scholar

Cao Y., Liu H., Qin N., Ren X., Zhu B., Xia X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci. Technol., 99: 295–310.Search in Google Scholar

Dawood M. A. O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquacult., 13: 642–663.Search in Google Scholar

Dawood M. A. O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454: 243–251.Search in Google Scholar

Dawood M. A. O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.Search in Google Scholar

Dawood M. A. O., Koshio S., Esteban M.Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.Search in Google Scholar

Dawood M. A. O., Koshio S., Abdel-Daim M. M., Van Doan H. (2019). Probiotic application for sustainable aquaculture. Rev. Aquacult., 11: 907–924.Search in Google Scholar

Dawood M. A., Abo-Al-Ela H. G., Hasan M. T. (2020 a). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol., 97: 268–282.10.1016/j.fsi.2019.12.05431863903Search in Google Scholar

Dawood M. A., Eweedah N. M., Moustafa E. M., Farahat E. M. (2020 b). Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture, 520: 734669.10.1016/j.aquaculture.2019.734669Search in Google Scholar

Dawood M. A. O., Eweedah N. M., Khalafalla M. M., Khalid A., Asely A. E., Fadl S. E., Amin A. A., Paray B. A., Ahmed H. A. (2020 c). Saccharomyces cerevisiae increases the acceptability of Nile tilapia (Oreochromis niloticus) to date palm seed meal. Aquacult. Rep., 17: 100314.10.1016/j.aqrep.2020.100314Search in Google Scholar

Doumas B. T., Bayse D. D., Carter R. J., Peters T., Schaffer R. (1981). A candidate reference method for determination of total protein in serum. I. Development and validation. Clin. Chem., 27: 1642–1650.Search in Google Scholar

Ellis A., Stolen J., Fletcher T., Anderson D., Robertson B., Van Muiswinkel W. (1990). Lysozyme assay. Tech. Fish Immunol., 1: 101–103.Search in Google Scholar

Essa M. A., Mabrouk H. A., Mohamed R. A., Michael F. R. (2011). Evaluating different additive levels of yeast, Saccharomyces cerevisiae, on the growth and production performances of a hybrid of two populations of Egyptian African catfish, Clarias gariepinus. Aquaculture, 320: 137–141.Search in Google Scholar

Ethuin F., Delarche C., Benslama S., Gougerot-Pocidalo M. -A., Jacob L., Chollet-Martin S. (2001). Interleukin-12 increases interleukin 8 production and release by human polymorphonuclear neutrophils. J. Leukoc. Biol., 70: 439–446.Search in Google Scholar

FAO (2018). Aquaculture Department. The state of world fisheries and aquaculture. Rome.Search in Google Scholar

Fiúza L. S., Aragão N. M., Ribeiro Junior H. P., de Moraes M. G., Rocha Í. R. C. B., Lustosa Neto A. D., de Sousa R. R., Madrid R. M. M., de Oliveira E. G., Costa F. H. F. (2015). Effects of salinity on the growth, survival, haematological parameters and osmoregulation of tambaqui Colossoma macropomum juveniles. Aquacult. Res., 46: 1–9.Search in Google Scholar

Garlock T., Asche F., Anderson J., Bjørndal T., Kumar G., Lorenzen K., Ropicki A., Smith M. D., Tveterås R. (2020). A global blue revolution: Aquaculture growth across regions, species, and countries. Rev. Fish. Sci. Aquac., 28: 107–116.Search in Google Scholar

Gella F. J., Olivella T., Pastor M. C., Arenas J., Moreno R., Durban R., Gomez J. A. (1985). A simple procedure for the routine determination of aspartate aminotransferase and alanine aminotransferase with pyridoxal phosphate. Clin. Chim. Acta., 153: 241–247.Search in Google Scholar

Hansen J. Ø., Lagos L., Lei P., Reveco-Urzua F. E., Morales-Lange B., Hansen L. D., Schiavone M., Mydland L. T., Arntzen M. Ø., Mercado L., Benicio R. T., Øverland M. (2021). Down-stream processing of baker’s yeast (Saccharomyces cerevisiae) – Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture, 530: 735707.Search in Google Scholar

Hindu S. V., Chandrasekaran N., Mukherjee A., Thomas J. (2019). A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquacult. Int., 27: 227–238.Search in Google Scholar

Hrubec T. C., Smith S. A. (1999). Differences between plasma and serum samples for the evaluation of blood chemistry values in rainbow trout, channel catfish, hybrid tilapias, and hybrid striped bass. J. Aquat. Anim. Health., 11: 116–122.Search in Google Scholar

Huang L., Ran C., He S., Ren P., Hu J., Zhao X., Zhou Z. (2015). Effects of dietary Saccharomyces cerevisiae culture or live cells with Bacillus amyloliquefaciens spores on growth performance, gut mucosal morphology, hsp70 gene expression, and disease resistance of juvenile common carp (Cyprinus carpio). Aquaculture, 438: 33–38.Search in Google Scholar

Huyben D., Nyman A., Vidaković A., Passoth V., Moccia R., Kiessling A., Dicksved J., Lundh T. (2017). Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture, 473: 528–537.Search in Google Scholar

Itou T., Lida T., Kawatsut H. (1996). Kinetics of oxygen metabolism during respiratory burst in Japanese eel neutrophils. Dev. Comp. Immunol., 20: 323–330.Search in Google Scholar

Iwashita M. K. P., Nakandakare I. B., Terhune J. S., Wood T., Ranzani-Paiva M. J. T. (2015). Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol., 43: 60–66.Search in Google Scholar

Kawahara E., Ueda T., Nomura S. (1991). In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Path., 26: 213–214.Search in Google Scholar

Kuebutornye F. K. A., Abarike E. D., Lu Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol., 87: 820–828.Search in Google Scholar

Li X. M., Ma Y. L., Liu X. J. (2007). Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J. Ethnopharmacol., 111: 504–511.Search in Google Scholar

Liu J., Cao S., Kim S., Chung E. Y., Homma Y., Guan X., Jimenez V., Ma X. (2005). Interleukin- 12: an update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev., 1: 119–137.Search in Google Scholar

Magalhães R., Sánchez-López A., Leal R. S., Martínez-Llorens S., Oliva-Teles A., Peres H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476: 79–85.Search in Google Scholar

Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol., 20: 137–151.Search in Google Scholar

Martínez-Álvarez R. M., Morales A. E., Sanz A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish., 15: 75–88.Search in Google Scholar

Ming J., Xie J., Xu P., Liu W., Ge X., Liu B., He Y., Cheng Y., Zhou Q., Pan L. (2010). Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol., 28: 407–418.Search in Google Scholar

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res., 29: e45.Search in Google Scholar

Reinhold J. (1953). Total protein, albumin and globulin. Standard Methods of Clinical Chemistry. 1.Search in Google Scholar

Reque V. R., de Moraes J. R. E., de Andrade Belo M. A., de Moraes F. R. (2010). Inflammation induced by inactivated Aeromonas hydrophila in Nile tilapia fed diets supplemented with Saccharomyces cerevisiae. Aquaculture, 300: 37–42.Search in Google Scholar

Shi X., Li D., Zhuang P., Nie F., Long L. (2006). Comparative blood biochemistry of Amur sturgeon, Acipenser schrenckii, and Chinese surgeon, Acipenser sinensis. Fish Physiol. Biochem., 32: 63.Search in Google Scholar

Stoskopf M. (1993). Fish Medicine. WB Saunders Comp. Philadelphia.Search in Google Scholar

Takahashi L. S., Biller-Takahashi J. D., Mansano C. F. M., Urbinati E. C., Gimbo R. Y., Saita M. V. (2017). Long-term organic selenium supplementation overcomes the tradeoff between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish Shellfish Immunol., 60: 311–317.Search in Google Scholar

Tort L., Balasch J., Mackenzie S. (2003). Fish immune system. A crossroads between innate and adaptive responses. Inmunología, 22: 277–286.Search in Google Scholar

Uribe C., Folch H., Enríquez R., Moran G. (2011). Innate and adaptive immunity in teleost fish: a review. Vet. Med-Czech, 56: 486–503.Search in Google Scholar

Yang X., He Y., Chi S., Tan B., Lin S., Dong X., Yang Q., Liu H., Zhang S. (2020). Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture, 529: 735655.Search in Google Scholar

Yao Y. -Y., Yang Y. -L., Gao C. -C., Zhang F. -L., Xia R., Li D., Hu J., Ran C., Zhang Z., Liu-Clarke J., Zhou Z. -G. (2020). Surface display system for probiotics and its application in aquaculture. Rev. Aquacult. 12: 2333–2350.Search in Google Scholar

Yilmaz S., Sova M., Ergün S. (2018). Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J. Appl. Microbiol., 125: 1714–1727.Search in Google Scholar

Yılmaz S., Ergun S., Yigit M., Çelik E.Ş. (2020). Effect of combination of dietary Bacillus subtilis and trans-cinnamic acid on innate immune responses and resistance of rainbow trout, Oncorhynchus mykiss to Yersinia ruckeri. Aquacult. Res., 51: 441–454.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin