Uneingeschränkter Zugang

Chlorella vulgaris microalgae in Ruminant Nutrition: a Review of the Chemical Composition and Nutritive Value


Zitieren

Ahmed M.H., Elghandour M.M.Y., Salem A.Z.M., Zeweil H.S., Kholif A.E., Klie-ve A.V., Abdelrassol A.M.A. (2015). Influence of Trichoderma reesei or Saccharomyces cerevisiae on performance, ruminal fermentation, carcass characteristics and blood biochemistry of lambs fed Atriplex nummularia and Acacia saligna mixture. Livest. Sci., 180: 90–97. Search in Google Scholar

Anele U.Y., Yang W.Z., Mc Ginn P.J., Tibbetts S.M., Mc Allister T.A.(2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci., 96: 354–363. Search in Google Scholar

Azzaz H.H., Kholif A.E., Abd El Tawab A.M., Khattab M.S.A., Murad H.A., Ola-fadehan O.A. (2020). A newly developed tannase enzyme from Aspergillus terreus versus commercial tannase in the diet of lactating Damascus goats fed diet containing pomegranate peel. Livest. Sci., 241: 104228. Search in Google Scholar

Becker E.W.(2007 a). Micro-algae as a source of protein. Biotechnol. Adv., 25: 207–210.10.1016/j.biotechadv.2006.11.00217196357 Search in Google Scholar

Becker E.W.(2007 b). Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. In: Handbook of microalgal culture, Richmond A. (ed.), CRC Press Inc., Boca Raton, Florida, pp. 380–391.10.1002/9780470995280.ch21 Search in Google Scholar

Becker E.W.(2013). Microalgae for human and animal nutrition. In: Handbook of microalgal culture: applied phycology and biotechnology. 2nd ed. John Wiley & Sons, Ltd, Oxford, UK, pp. 461–503.10.1002/9781118567166.ch25 Search in Google Scholar

Berliner M.(1986). Proteins in Chlorella vulgaris. Microbios, 46: 199–203. Search in Google Scholar

Bogdanova A.A., Flerova E.A.(2018). Biochemical and hematological composition of blood of cattle fed with Chlorella. Regul. Mech. Biosyst., 9: 244–249. Search in Google Scholar

Cedillo J., Vázquez-Armijo J.F., González-Reyna A., Salem A.Z.M., Kho-lif A.E., Hernández-Meléndez J., Martínez-González J.C., de Oca Jimé-nez R.M., Rivero N., López D. (2014). Effects of different doses of Salix babylonica extract on growth performance and diet in vitro gas production in Pelibuey growing lambs. Ital. J. Anim. Sci., 13: 609–613. Search in Google Scholar

Chakraborty M., Mc Donald A.G., Nindo C., Chen S.(2013). An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Res., 2: 230–236. Search in Google Scholar

Choix F.J., de-Bashan L.E., Bashan Y.(2012). Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzyme Microb. Technol., 51: 294–299. Search in Google Scholar

Ebeid H.M., Mengwei L., Kholif A.E., Hassan F., Lijuan P., Xin L., Chengjian Y.(2020). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol., 77: 1271–1282. Search in Google Scholar

Elghandour M.M.Y., Vázquez Chagoyán J.C., Salem A.Z.M., Kholif A.E., Mar-tínez Castañeda J.S., Camacho L.M., Buendía G. (2014). In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci., 34: 619–625. Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L.M., Márquez O., Salem A.Z.M. (2016 a). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci., 61: 262–272.10.17221/52/2015-CJAS Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., López S., Mendoza G.D., Odongo N.E., Sa-lem A.Z.M., (2016 b). In vitro gas, methane, and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses in response to the supplementation with different live yeast additives. J. Equine Vet. Sci., 38: 64–71.10.1016/j.jevs.2015.12.010 Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., Salem A.Z.M., Montesde Oca R., Barbabosa A., Mariezcurrena M., Olafadehan O.A. (2016 c). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J. Clean. Prod., 135: 194–200.10.1016/j.jclepro.2016.06.081 Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., Salem A.Z.M., Olafadehan O.A., Kholif A.M.(2016 d). Sustainable anaerobic rumen methane and carbon dioxide productions from prickly pear cactus flour by organic acid salts addition. J. Clean. Prod., 139: 1362–1369.10.1016/j.jclepro.2016.08.075 Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., Hernández A., Salem A.Z.M., Mellado M., Odon-go N.E. (2017). Effects of organic acid salts on ruminal biogas production and fermentation kinetics of total mixed rations with different maize silage to concentrate ratios. J. Clean. Prod., 147: 523–530. Search in Google Scholar

Erickson P.S., Kalscheur K.F.(2019). Nutrition and feeding of dairy cattle. In: Animal agriculture: sustainability, challenges and innovations. Elsevier, pp. 157–180. Search in Google Scholar

Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafade-han O.A.(2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem., 66: 1751–1759. Search in Google Scholar

González-Fernández C., Sialve B., Bernet N., Steyer J.P.(2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels Bioprod. Biorefining, 6: 105–113. Search in Google Scholar

Gonzalez L.E., Bashan Y.(2000). Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol., 66: 1527–1531. Search in Google Scholar

Han K.J., Mc Cormick M.E.(2014). Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J. Anim. Sci. Biotechnol., 5: 31. Search in Google Scholar

Hernández A., Kholif A.E., Elghandour M.M.Y., Camacho L.M., Cipriano M.M., Salem A.Z.M., Cruz H., Ugbogu E.A. (2017). Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms. J. Clean. Prod., 148: 616–62310.1016/j.jclepro.2017.01.070 Search in Google Scholar

Janczyk P., Franke H., Souffrant W.B.(2007). Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats. Anim. Feed Sci. Technol., 132: 163–169. Search in Google Scholar

Khattab H.M., Gado H.M., Salem A.Z.M., Camacho L.M., El-Sayed M.M., Kho-lif A.M., El-Shewy A.A., Kholif A.E. (2013). Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol., 13: 507–516. Search in Google Scholar

Kholif A.E., Morsy T.A., Abd El Tawab A.M., Anele U.Y., Galyean M.L.(2016). Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem., 64: 6163–6170. Search in Google Scholar

Kholif A.E., Abdo M.M., Anele U.Y., El-Sayed M.M., Morsy T.A.(2017 a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23.10.1016/j.livsci.2017.10.002 Search in Google Scholar

Kholif A.E., Elghandour M.M.Y., Salem A.Z.M., Barbabosa A., Márquez O., Odon-go N.E. (2017 b). The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. J. Agric. Sci., 155: 494–507.10.1017/S0021859616000812 Search in Google Scholar

Kholif A.E., Matloup O.H., Morsy T.A., Abdo M.M., Abu Elella A.A., Anele U.Y., Swanson K.C. (2017 c). Rosemary and lemongrass herbs as phytogenic feed additives to im prove efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci., 204: 39–46.10.1016/j.livsci.2017.08.001 Search in Google Scholar

Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G., El-Sayed A.B.(2017 d). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 155: 508–518.10.1017/S0021859616000824 Search in Google Scholar

Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M.(2018 a). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S1751731117002336 Search in Google Scholar

Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafade-han O.A., Morsy T.A. (2018 b). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011 Search in Google Scholar

Kholif A.E., Hamdon H.A., Kassab A.Y., Farahat E.S.A., Azzaz H.H., Matloup O.H., Mohamed A.G., Anele U.Y. (2020). Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat. J. Anim. Physiol. Anim. Nutr. (Berl.), 104: 1595–1605. Search in Google Scholar

Kholif A.E., Kassab A.Y., Hamdon H.A.(2021). Chlorella vulgaris microalgae and copper mixture supplementation enhanced the nutrient digestibility and milk attributes in lactating Boer goats. Ann. Anim. Sci., 21, https://doi.org/10.2478/aoas-2020-008910.2478/aoas-2020-0089 Search in Google Scholar

Kong W., Liu N., Zhang J., Yang Q., Hua S., Song H., Xia C.(2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol., 51: 2006–2013. Search in Google Scholar

Kotrbáček V., Doubek J., Doucha J.(2015). The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol., 27: 2173–2180. Search in Google Scholar

KovačD., SimeunovićJ., BabićO., Mišan A.Č., MilovanovićI.L. (2013). Algae in food and feed. Food Feed Res., 40: 21–31. Search in Google Scholar

Kwang H.C., Lee H.J., Koo S.Y., Song D.G., Lee D.U., Pan C.H.(2010). Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem., 58: 793–797. Search in Google Scholar

Lamminen M., Halmemies-Beauchet-Filleau A., Kokkonen T., Simpura I., Jaakkola S., Vanhatalo A. (2017). Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim. Feed Sci. Technol., 234: 295–311. Search in Google Scholar

Lodge-Ivey S.L., Tracey L.N., Salazar A.(2014). Ruminant nutrition symposium: The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J. Anim. Sci., 92: 1331–1342. Search in Google Scholar

Madeira M.S., Cardoso C., Lopes P.A., Coelho D., Afonso C., Bandarra N.M., Prates J.A.M., (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci., 205: 111–121. Search in Google Scholar

Mahdy A., Mendez L., Tomás-PejóE., del Mar Morales M., Ballesteros M., González-Fernández C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J. Chem. Technol. Biotechnol., 91: 1299–1305. Search in Google Scholar

Marrez D.A., Cieślak A., Gawad R., Ebeid H.M., ChrenkováM., Gao M., Yanza Y.R., El-Sherbiny M., Szumacher-Strabel M. (2017). Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. J. Anim. Feed Sci., 26: 359–364. Search in Google Scholar

Maruyama I., Nakao T., Shigeno I., Ando Y., Hirayama K.(1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. In: Hydrobiologia. Springer Netherlands, Dordrecht, pp. 133–138.10.1007/978-94-017-2097-7_20 Search in Google Scholar

Matloup O.H., Abd El Tawab A.M., Hassan A.A., Hadhoud F.I., Khattab M.S.A., Khalel M.S., Sallam S.M.A., Kholif A.E. (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol., 226: 88–97. Search in Google Scholar

Morris Quevedo H.J., Quintana Cabrales M.M., Almarales A., Hernandez L., (1999). Composición bioquímica y evaluación de la calidad proteica de la biomasa autotrófica de Chlorella vulgaris. Anal. Chem., 13: 123–128. Search in Google Scholar

Morsy T.A., Kholif S.M., Kholif A.E., Matloup O.H., Salem A.Z.M., Abu Elella A.(2015). Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australas. J. Anim. Sci., 28: 1116–1122. Search in Google Scholar

Morsy T.A., Kholif A.E., Matloup O.H., Abu Elella A., Anele U.Y., Caton J.S.(2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85: 142–151. Search in Google Scholar

Olafadehan O.A.(2011). Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Vet. Arh., 81: 471–483. Search in Google Scholar

Olafadehan O.A., Njidda A.A., Okunade S.A., Adewumi M.K., Awosanmi K.J., Ijanmi T.O., Raymond A. (2016). Effects of feeding Ficus polita foliage-based complete rations with varying forage: Concentrate ratio on performance and ruminal fermentation in growing goats. Anim. Nutr. Feed Technol., 16: 373–382. Search in Google Scholar

Panahi Y., Pishgoo B., Jalalian H.R., Mohammadi E., Taghipour H.R., Saheb-kar A., Abolhasani E. (2012). Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open-label clinical trial. Nutr. Diet. 69: 13–19. Search in Google Scholar

Rani K., Sandal N., Sahoo P.K.(2018). A comprehensive review on chlorella – its composition, health benefits, market and regulatory scenario. The Pharma Innov. J., 7: 584–589. Search in Google Scholar

Rayman M.P.(2000). The importance of selenium to human health. Lancet. https://doi.org/10.1016/S0140-6736(00)02490-910.1016/S0140-6736(00)02490-9 Search in Google Scholar

Ru I.T.K., Sung Y.Y., Jusoh M., Wahid M.E.A., Nagappan T.(2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol., 1: 2–11. Search in Google Scholar

Safi C., Charton M., Pignolet O., Silvestre F., Vaca-Garcia C., Pontalier P.Y.(2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol., 25: 523–529. Search in Google Scholar

Safi C., Zebib B., Merah O., Pontalier P.Y., Vaca-Garcia C.(2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev., 35: 265–278. Search in Google Scholar

Sallam S.M.A., Abdelmalek M.L.R., Kholif A.E., Zahran S.M., Ahmed M.H., Ze-weil H.S., Attia M.F.A., Matloup O.H., Olafadehan O.A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim. Biotechnol., 31: 491–497. Search in Google Scholar

Singh J., Gu S.(2010). Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev., https://doi.org/10.1016/j.rser.2010.06.01410.1016/j.rser.2010.06.014 Search in Google Scholar

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101: 87–96. Search in Google Scholar

Sucu E.(2020). Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann. Anim. Sci., 20: 207–218. Search in Google Scholar

Takeda H.(1991). Sugar composition of the cell wall and the taxonomy of chlorella (Chlorophyceae). J. Phycol., 27: 224–232. Search in Google Scholar

Tibbetts S.M., Milley J.E., Lall S.P.(2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119. Search in Google Scholar

TokuşogluÖ., Ünal M.K.(2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci., 68: 1144–1148. Search in Google Scholar

Trávníček J., KroupováV., KonečnýR., StaňkováM., ŠťastnáJ., HasoňováL., MikulováM. (2010). Iodine status in ewes with the intake of iodine enriched alga Chlorella. Czech J. Anim. Sci., 55: 58–65. Search in Google Scholar

Tsiplakou E., Abdullah M.A.M., Skliros D., Chatzikonstantinou M., Flemeta-kis E., Labrou N., Zervas G. (2017). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: 275–283. Search in Google Scholar

Tsiplakou E., Abdullah M.A.M., Mavrommatis A., Chatzikonstantinou M., Skliros D., Sotirakoglou K., Flemetakis E., Labrou N.E., Zervas G. (2018). The effect of dietary Chlorella vulgaris inclusion on goat’s milk chemical composition, fatty acids profile and enzymes activities related to oxidation. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 142–151. Search in Google Scholar

Vanegas J.L., González J., Carro M.D.(2017). Influence of protein fermentation and carbohydrate source on in vitro methane production. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: e288–e296. Search in Google Scholar

Wild K.J., SteingaßH., Rodehutscord M.(2019). Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy, 11: 345–359. Search in Google Scholar

Yeh K.L., Chang J.S.(2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol., 105: 120–127. Search in Google Scholar

Yusof Y.A.M., Basari J.M.H., Mukti N.A., Sabuddin R., Muda A.R., Sulaiman S., Makpol S., Ngah W.Z.W. (2011). Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. African J. Biotechnol., 10: 13536–13542. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin