Uneingeschränkter Zugang

Assessment of parametric and non-parametric methods for prediction of quantitative traits with non-additive genetic architecture


Zitieren

Abdollahi-Arpanahi R., Pakdel A., Nejati-Javaremi A., Shahrbabak M. M., Ghafouri-Kesbi F. (2014). The relation between the genetic architecture of quantitative traits and long-term genetic response. J. Appl. Genet., 1–9.10.1007/s13353-014-0205-124671636Search in Google Scholar

Abdollahi-Arpanahi R., Morota G., Valente B., Kranis A., Rosa G. (2015). Assessment of bagging GBLUP for whole genome prediction of broiler chicken traits. J. Anim. Breed. Genet., 132: 218–228.Search in Google Scholar

Abdollahi-Arpanahi R., Gianola D., Peñagaricano F. (2020). Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genet. Sel. Evol., 52: 1–15.Search in Google Scholar

Breiman L. (2001). Random forests. Machine Learning, 45: 5–32.Search in Google Scholar

Carlborg Ö., Haley C. S. (2004). Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet., 5: 618.Search in Google Scholar

Charfeddine N., Rodríguez-Ramilo S. T., Jiménez-Montero J. A., Carabaño M. J., González-Recio O. (2013). Non parametric vs. GBLUP model for genomic evaluation with large reference population in Holstein cattle. Interbull Bull., 47.Search in Google Scholar

Daetwyler H. D., Villanueva B., Bijma P., Woolliams J. A. (2007). Inbreeding in genome-wide selection. J. Anim. Breed. Genet., 124: 369–376.Search in Google Scholar

Dai Z., Long N., Huang W. (2019). Influence of genetic interactions on polygenic prediction. BioRxiv: 667162.Search in Google Scholar

de Almeida Filho J., Guimarães J., e Silva F., de Resende M., Muñoz P., Kirst M., Resende M. (2016). The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity, 117: 33–41.Search in Google Scholar

delos Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D., Calus M. P. (2013). Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193: 327–345.Search in Google Scholar

Duchemin S., etal. (2012). Genomic selection in the French Lacaune dairy sheep breed. J. Dairy Sci., 95: 2723–2733.Search in Google Scholar

Evans D. M., Marchini J., Morris A. P., Cardon L. R. (2006). Two-stage two-locus models in genome-wide association. PLoS Genet., 2:e157.Search in Google Scholar

Falconer D. S., Mackay T. F. (1996). Introduction to quantitative genetics. Harlow: Addison Wesley Longman.Search in Google Scholar

Gengler N., Van Vleck L. D., Mac Neil M., Misztal I., Pariacote F. (1997). Influence of dominance relationships on the estimation of dominance variance with sire-dam subclass effects. J. Anim. Sci., 75: 2885–2891.Search in Google Scholar

Gianola D., Fernando R. L., Stella A. (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics, 173: 1761–1776.Search in Google Scholar

Gianola D., Weigel K. A., Krämer N., Stella A., Schön C. -C. (2014). Enhancing genome-enabled prediction by bagging genomic BLUP. PLoS One, 9:e91693.Search in Google Scholar

Hastie T., Tibshirani R., Friedman J. (2009). The elements of statistical learning: prediction, inference and data mining. Springer-Verlag, New York.Search in Google Scholar

Heidaritabar M., Wolc A., Arango J., Zeng J., Settar P., Fulton J. E., O’Sullivan N. P., Bastiaansen J. W. M., Fernando R. L., Garrick D. J., Dekkers J. C. M. (2016). Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. J. Anim. Breed. Genet., 133: 334–346.Search in Google Scholar

Howard R., Carriquiry A. L., Beavis W. D. (2014). Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3: Gen. Genom. Genet., 4: 1027–1046.Search in Google Scholar

Lee S. H., vander Werf J. H., Hayes B. J., Goddard M. E., Visscher P. M. (2008). Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet, 4:e1000231.Search in Google Scholar

Liaw A., Wiener M. (2002). Classification and regression by randomForest. R News, 2: 18–22.Search in Google Scholar

Long N., Gianola D., Rosa G. J., Weigel K. A. (2011). Marker-assisted prediction of non-additive genetic values. Genetica, 139: 843–854.Search in Google Scholar

Lorenzana R. E., Bernardo R. (2009). Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor. Appl. Genet., 120: 151–161.Search in Google Scholar

Lynch M., Walsh B. (1998). Genetics and analysis of quantitative traits. Sinauer Sunderland, MA.Search in Google Scholar

Marchini J., Donnelly P., Cardon L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet., 37: 413.Search in Google Scholar

Meuwissen T., Hayes B., Goddard M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.Search in Google Scholar

Momen M., etal. (2018). Predictive ability of genome-assisted statistical models under various forms of gene action. Sci. Rep., 8.Search in Google Scholar

Nazarian A., Gezan S. A. (2016). Integrating nonadditive genomic relationship matrices into the study of genetic architecture of complex traits. J. Heredity, 107: 153–162.Search in Google Scholar

Norris D., Varona L., Ngambi J., Visser D., Mbajiorgu C. A., Voordewind S. (2010). Estimation of the additive and dominance variances in SA Duroc pigs. Livest. Sci., 131: 144–147.Search in Google Scholar

Ober U., etal. (2012). Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet, 8:e1002685.Search in Google Scholar

Palucci V., Schaeffer L. R., Miglior F., Osborne V. (2007). Non-additive genetic effects for fertility traits in Canadian Holstein cattle. Genet. Select. Evol., 39: 181.Search in Google Scholar

Pérez P., de Los Campos G. (2014). Genome-wide regression & prediction with the BGLR statistical package. Genetics, 114: 164442.Search in Google Scholar

Pryce J., Hayes B., Goddard M. (2012). Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. J. Dairy Sci., 95: 377–388.Search in Google Scholar

Sahebalam H., Gholizadeh M., Hafezian H., Farhadi A. (2019). Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation. J. Genet., 98: 102.Search in Google Scholar

Schierenbeck S., etal. (2011). Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships. J. Dairy Sci., 94: 6143–6152.Search in Google Scholar

Su G., Christensen O. F., Ostersen T., Henryon M., Lund M. S. (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PloS One, 7:e45293.Search in Google Scholar

Sun X., Ma P., Mumm R. H. (2012). Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding. PloS One, 7:e50604.Search in Google Scholar

Tan B., Grattapaglia D., Wu H. X., Ingvarsson P. K. (2018). Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. Plant Sci., 267: 84–93.Search in Google Scholar

Technow F. (2013). R package hypred: Simulation of genomic data in applied genetics.Search in Google Scholar

Van Raden P., Van Tassell C., Wiggans G., Sonstegard T., Schnabel R., Taylor J., Schenkel F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 92: 16–24.Search in Google Scholar

Waldmann P. (2016). Genome-wide prediction using Bayesian additive regression trees. Genet. Sel. Evol., 48: 42.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin