Uneingeschränkter Zugang

Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency – a review


Zitieren

Adams M.C., Luo J., Rayward D., King S., Gibson R., Moghaddam G.H. (2008). Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim. Feed Sci. Technol., 145: 41–52.Search in Google Scholar

Allen H.K., Levine U.Y., Looft T., Bandrick M., Casey T.A. (2013). Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol., 21: 114–119.Search in Google Scholar

Al-Saiady M.Y. (2010). Effect of probiotic bacteria on immunoglobulin G concentration and other blood components of newborn calves. J. Anim. Vet. Adv., 9: 604–609.Search in Google Scholar

Al-Yasiry A.R.M., Kiczorowska B. (2016). Frankincense – therapeutic properties. Post. Hig., 70: 380–391.Search in Google Scholar

Amlan K. (2011). Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J. Anim. Vet. Adv., 6: 416–428.Search in Google Scholar

Anadón A., Ares I., Martínez-Larrañaga M.R., Martínez M.A. (2019). Prebiotics and probiotics in feed and animal health. In Nutraceuticals in Veterinary Medicine. Springer, Cham., pp. 261–285.10.1007/978-3-030-04624-8_19Search in Google Scholar

Bagno O.A., Prokhorov O.N., Shevchenko S.A., Shevchenko A.I., Dyadichkina T.V. (2018). Use of phytobiotics in farm animal feeding. Sel’skokhozyaistvennaya Biol., 53: 687–697.Search in Google Scholar

Bayatkouhsar J., Tahmasebi A.M., Naserian A.A., Mokarram R.R., Valizadeh R. (2013). Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim. Feed Sci. Technol., 186: 1–11.Search in Google Scholar

Benyacoub J., Rochat F., Saudan K.-Y., Rochat A.N., Cherbut C., vonder Weid T., Schiffrin E.J., Blum S. (2008). Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J. Nutr., 138: 123–129.Search in Google Scholar

Bichra M., El-Modafar C., El-Abbassi A., Bouamama H., Benkhalti F. (2020). Antioxidant activities and phenolic profile of six Moroccan selected herbs. J. Microbiol. Biotechnol. Food Sci., 9: 2320–2338.Search in Google Scholar

Biernasiuk J., Śliżewska K., Libudzisz Z. (2010). Negative effects of using antibiotics (in Polish). Post. Nauk Rol., 3: 105–117.Search in Google Scholar

Bravo D.M., Wall E.H. (2016). The rumen and beyond: nutritional physiology of the modern dairy cow. J. Dairy Sci., 99: 4939–4940.Search in Google Scholar

Bunešová V., Domig K.J., Killer J., Vlková E., Kopečný J., Mrázek J., Ročkováa S., Radaa W. (2012). Characterization of bifidobacteria suitable for probiotic use in calves. Anaerobe, 18: 166–168.Search in Google Scholar

Callaway R., Edringtona T.S., Andersona R.C., Harveya R.B., Genovesea K.J., Kennedya C.N., Venna D.W., Nisbeta D.J. (2008). Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim. Health Res. Rev., 9: 217–225.Search in Google Scholar

Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580–2595.Search in Google Scholar

Caroprese M., Ciliberti M.G., Albenzio M. (2020). Application of aromatic plants and their extracts in dairy animals. In Feed Additives. Academic Press, pp. 261–277.10.1016/B978-0-12-814700-9.00015-7Search in Google Scholar

Castro F.P., Cunha T.M., Ogliari P.J., Teofilo R.F., Ferreira M.M.C., Prudencio E.S. (2009). Influence of different content of cheese whey and oligofructose on the properties of fermented lactic beverages: Study using response surface methodology. Food Sci. Technol., 42: 993–997.Search in Google Scholar

Chaucheyras-Durand F., Durand H. (2010). Probiotics in animal nutrition and health. Benef. Microbes., 1: 3–9.Search in Google Scholar

Chaudhry A.S., Khan M.M.H. (2012). Impacts of different spices on in vitro rumen dry matter disappearance, fermentation and methane of wheat or ryegrass hay based substrates. Livest. Sci., 146: 84–90.Search in Google Scholar

Chen J., Holo H., Schwarm A., Harstad O.M. (2020). Ruminal survival of Propionibacterium thoenii T159 in dairy cows at high feed intake. Acta Agri. Scand. A-An., 1–3.10.1080/09064702.2020.1769719Search in Google Scholar

Chiba E., Villena J., Hosoya S., Takanashi N., Simazu T., Aso H., Tohnod M., Su-dae Y., Kawaia Y., Saitoa T., Miyazawaf K., Hef F., Kitazawaa H. (2012). A newly established bovine intestinal epithelial cell line is effective for in vitro screening of potential antiviral immunobiotic microorganisms for cattle. Res. Vet. Sci., 93: 688–694.Search in Google Scholar

Chiquette J., Allison M.J., Rasmussen M.A. (2008). Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci., 91: 3536–3543.Search in Google Scholar

Christaki E., Bonos E., Giannenas I., Florou-Paneri P. (2012). A review: aromatic plants as a source of bioactive compounds. Agric., 2: 228–243.Search in Google Scholar

Desnoyers M., Giger-Reverdin S., Bertin G., Duvaux-Ponter C., Sauvant D. (2009). Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci., 92: 1620–1632.Search in Google Scholar

Dicks L., Botes M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes., 1: 11–29.Search in Google Scholar

Duvvu M.V., Rao K.A., Seshaiah C.V., Kumar D.S. (2018). Effect of garlic supplementation on the growth performance and body condition score in Murrah buffalo calves. Int. J. Curr. Microbiol. App. Sci., 7: 2972–2977.Search in Google Scholar

Ebrahimi M.A., Sobhanirad S., Bayat A.R. (2018). Effects of Ajwain (Trachyspermum ammi) and thyme (Thymus vulgaris) oils on nutrients digestibility, blood parameters and growth performance of Brown Swiss neonatal calves. Iran. J. Applied Anim. Sci., 8: 387–395.Search in Google Scholar

Elghandour M.M., Salem A.Z., Castañeda J.M., Camacho L.M., Kholif A.E., Chagoyán J.V. (2015). Direct-fed microbes: A tool for improving the utilization of low quality roughages in ruminants. J. Integr Agric., 14: 526–533.Search in Google Scholar

Elghandour M.M.Y., Chagoyan J.C.V, Salem A.Z.M, Kholif A.E., Castaneda J.S.M, Camacho L.M., Buendia G. (2014). In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci., 34: 619–625.Search in Google Scholar

Ellingsen K., Mejdell C.M., Ottesen N., Larsen S., Grøndahl A.M. (2016). The effect of large milk meals on digestive physiology and behaviour in dairy calves. Physiol. Behav., 154: 169–174.Search in Google Scholar

Encinas C.M.A., Villalobos G.V., Viveros J.D., Flores G.C., Almora E.A., Ran-gel F.C. (2018). Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes. R. Bras. Zootec., 47, e20170121: 1–7.Search in Google Scholar

Faehnrich B., Chizzola R., Schabauer A., Pracser N., Duerrschmid K. (2017). Volatiles in dairy products after supplementation of essential oils in the diet of cows and influence on taste of cheese. Eur. Food Res. Technol., 243: 1783–1797.Search in Google Scholar

Faniyi T.O., Prates Ê.R., Adewumi M.K., Bankole T. (2016). Assessment of herbs and spices extracts/meal on rumen fermentation. PUBVET. 10: 427–438.Search in Google Scholar

Francesca G., Paola M., Bruno B. (2010). Probiotics and prebiotics in animal feeding for safe food production. Intl. J. Food Microbiol., 141: 15–28.Search in Google Scholar

Frankic T., Voljg M., Salobir J., Rezar V. (2009). Use of herbs and spices and their extracts in animal nutrition. Acta Agr. Slov., 92: 95–102.Search in Google Scholar

Frizzo L.S., Sotto L.P., Zbrun M.V., Bertozzi E., Sequeira G., Armesto R.R., Rosmini M.R. (2010). Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol., 157: 159–167.Search in Google Scholar

Galyean M.L., Nunnery G.A., Defoor P.J., Salyer G.B., Parsons C.H. (2000). Effects of live cultures of Lactobacillus acidophilus (strains 45 and 51) and Propionibacterium freudenreichii PF-24 on performance and carcass characteristics of finishing beef steers. Burnett Center Progress Report 8, Lubbock, Texas, USA.Search in Google Scholar

Garcia-Mazcorro J.F., Rodriguez-Herrera M.V., Marroquin-Cardona A.G., Kawas J.R. (2019). The health enhancer yeast Saccharomyces cerevisiae in two types of commercial products for animal nutrition. Lett. App. Microbiol., 68: 472–478.Search in Google Scholar

Ghafaria M., Foroozandeh S.A.D., Nasrollahib S.M., Aminib H.R., Beaucheminc K.A. (2015). Cumin seed improves nutrient intake and milk production by dairy cows. Anim. Feed Sci. Technol., 210: 276–280.Search in Google Scholar

Ghosh S., Mehla R.K. (2012). Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves. Trop. Anim. Health Pro. 44: 617–622.Search in Google Scholar

Giannenas I., Skoufos J., Giannakopoulos C., Wiemann M., Gortzi O., Lalas S, Kyriazakis I. (2011). Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci., 11: 69–77.Search in Google Scholar

Gladine C., Rock E., Morand C., Bauchart D., Durand D. (2007). Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br. J. Nutr., 98: 691–701.Search in Google Scholar

Gorlov I.F., Belyaev A.I., Slozhenkina M.I., Mosolova N.I., Zlobina E.Y., Randelin A.V., Bondarkova E.Y., Sherstyuk B.A. (2020). New synbiotic-mineral complex in lactating cows’ diets to improve their productivity and milk composition. Iran. J. Appl. Anim. Sci., 10: 31–43.Search in Google Scholar

Graham M.S., Ronald Ross W., Robert J.Collier(2016). Pre- and probiotic supplementation in ruminant livestock production. Bioactive Foods in Health Promotion, 2: 25–36.Search in Google Scholar

Grand E., Respondek F., Martineau C., Detilleux J., Bertrand G. (2013). Effects of short-chain fructooligosaccharides on growth performance of preruminant veal calves. J. Dairy Sci., 96: 1094–1101.Search in Google Scholar

Grela E.R., Samolińska W., Kiczorowska B., Klebaniuk R., Kiczorowski P. (2017). Content of minerals, fatty acids and their correlation with phytochemical compounds and antioxidant activity of leguminous seeds. Biol. Trace Elem. Res., 180: 338–348.Search in Google Scholar

Guedes C.M., Gonçalves D., Rodrigues M.A.M., Dias-Da-Silva A. (2008). Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim. Feed Sci. Tech., 145: 27-40.Search in Google Scholar

Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. (2011). Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact., 10: 2–13.Search in Google Scholar

Heinrichs A.J., Jones C.M., Elizondo-Salazar J.A., Terrill S.J. (2009). Effects of a prebiotic supplement on health of neonatal dairy calves. Livest. Sci., 125: 149–154.Search in Google Scholar

Hill T.M., Aldrich J.M., Schlotterbeck R.L., Bateman H.G. (2007). Apex plant botanicals for neonatal calf milk replacers and starters. Prof. Anim. Sci., 23: 521–526.Search in Google Scholar

Hutkins R.W., Krumbeck J.A., Bindels L.B., Cani P.D., Fahey Jr.G., Goh Y.J., Hamaker B., Martens E.C., Mills D.A., Rastal R.A., Vaughan E., Sanders M.E. (2016). Prebiotics: why definitions matter. Curr. Opin. Biotech. 37: 1–7.Search in Google Scholar

Ingale S.L., Pattanaik A.K., Baliyan S., Kankoriya S., Dutta N., Sharma K. (2017). Long-term effects of feeding a novel phytoadditive on nutrient utilization, growth performance, metabolic profile and antioxidant status of goats. Agric. Res., 6: 82–90.Search in Google Scholar

Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M., Morgavi D.P. (2019). Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol., 10: 41–49.Search in Google Scholar

Julien C., Briche M., Legendre H., Delcloy V., Heumez G. (2018). Field study of the impact of supplementation with probiotic yeast (Saccharomyces cerevisiae Sc47-CNCM I-4407) on reproductive performance in dairy cows. Agric. Sci., 9: 1664–1676.Search in Google Scholar

Kenney N.M., Vanzant E.S., Harmon D.L., Mc Leod K.R. (2015). Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. J. Anim. Sci., 93: 2336–2348.Search in Google Scholar

Kiczorowska B., Klebaniuk R., Bąkowski M., Al-Yasiry A.R.M. (2015). Culinary herbs – nutritive value and content of minerals. J. Elem., 20: 599–608.Search in Google Scholar

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M, Kiczorowski P., Winiarska-Mieczan A. ((2017 a). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci., 17: 605–625.10.1515/aoas-2016-0076Search in Google Scholar

Kiczorowska B., Samolińska W., Marczuk J., Winiarska-Mieczan A., Klebaniuk R, Kowalczuk-Vasilev E., Kiczorowski P., Zasadna Z. ((2017 b). Comparison of nutritional composition and fatty acid profile of organic and conventional milk. J. Food Comp. Anal., 63: 157–163.10.1016/j.jfca.2017.08.002Search in Google Scholar

Kiczorowska B., Klebaniuk R., Kowalczuk-Vasilev E., Bąkowski M., Samolińska W., Jarzyna P., Zasadna Z., Olcha M., Kwiecień M., Winiarska-Mieczan A., Zając M., Al-Yasiry A.R.M., Danek-Majewska A. (2018). The efficiency of dairy cows nutrition in chosen farms of central-eastern Poland. Ann. Wars. Univ. Life Sci.-SGGW, Anim. Sci., 57: 349–356.Search in Google Scholar

Kiczorowska B., Samolińska W., Andrejko D., Kiczorowski P., Antoszkiewicz Z, Zając M., Winiarska-Mieczan A., Bąkowski M. (2019). Comparative analysis of selected bioactive components (fatty acids, tocopherols, carotenoides, polyphenols) with nutritional and functional properties in processed traditional oil seeds (Camelina sativa L. Crantz, Helianthus L., Linum L.). J. Food Sci. Technol., 56: 4296–4310,Search in Google Scholar

Klebaniuk R., Grela E.R., Kowalczuk-Vasilev E., Olcha M., GóźdźJ. (2014). The effectiveness of using herbal mixtures in organic cattle farming (in Polish). Wiad. Zoot. 56: 56–63.Search in Google Scholar

Klebaniuk R., Bąkowski M., Kowalczuk-Vasilev E., Olcha M., Widz J., Zając M. (2016). Effect of herbal mixture in beef cattle diets on fattening performance and nutrient digestibility. Ann. Warsaw Univ. Life Sci. – SGGW, Anim. Sci., 55: 187–195.Search in Google Scholar

Klebaniuk R., Kowalczuk-Vasilev E., Bąkowski M., Rocki G., Grela E.R., Kiczorowska B., Matras J., Widz J., Kępka K. (2017). Effectiveness of herbal mixtures in beef cattle feeding (in Polish). Med. Weter., 73: 751–755.Search in Google Scholar

Kobayashi H., Kanmani P., Ishizuka T., Miyazaki A., Soma J., Albarracin L., Suda Y., Nochi T., Aso H., Iwabuchi N., Xiao J.Z., Saito T., Villena J. (2017). Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes. Benef. Microbes., 8: 309–321.Search in Google Scholar

Kongmun P., Wanapat M., Pakdee P., Navanukraw C., Yu Z. (2011). Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livest. Sci., 135: 84–92.Search in Google Scholar

Kozyr V.S., Antonenko P.P., Mylostyvyi R.V., Suslova N.I., Skliarov P.M., Reshetnychenko O.P., Pushkar T.D., Sapronova V.O, Pokhyl O.M. (2019). Effect of herbal feed additives on the quality of colostrum, immunological indicators of newborn calves blood and growth energy of young animals. Theoret. Appl. Vet. Med., 7: 137–142.Search in Google Scholar

Kraszewski J., Wawrzyński M., Radecki P. (2008). Effect of herb supplementation of cow feeds on udder health and cytological and microbiological picture of milk (in Polish). Wiad. Zoot., 46: 3–7.Search in Google Scholar

Krehbiel C.R., Rust S.R., Zhang G., Gilliland S.E. (2003). Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J. Anim. Sci., 81: E120–E132.Search in Google Scholar

Kulakova T.S., Tretyakov E.A., Fomina L.L., Zakrepina E.N., Zhuravlyova S.G. (2019). Effects of adsorbent and phytobiotic on density of rumen infusoria and cow milk production. Russian Agric. Sci., 45: 194–196.Search in Google Scholar

Lascano G.J., Zanton G.I., Heinrichs A.J. (2009). Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers. Livest. Sci., 126: 189–194.Search in Google Scholar

Lehloenya K.V., Stein D.R., Allen D.T., Selk G.E., Jones D.A., Aleman M.M., Rehberger T.G., Mertz K.J., Spicer L.J. (2008). Effects of feeding yeast and propionibacteria to dairy cows on milk yield and components, and reproduction. J.Anim. Physiol. An. N., 92: 190–202.Search in Google Scholar

Leicester H.C.vd W., Robinson P.H., Erasmus L.J. (2016). Effects of two yeast based direct fed microbials on performance of high producing dairy cows. Anim. Feed. Sci. Technol., 215: 58–72.Search in Google Scholar

Malekkhahi M., Tahmasbi A.M., Naseriana A.A., Danesh-Mesgarana M., Kleenb J.L., Al Zahal O., Ghaffari M.H. (2016). Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed Sci. Technol., 213: 29–43.Search in Google Scholar

Malik J.K., Prakash A., Srivastava A.K., Gupta R.C. (2019). Synbiotics in animal health and production. In Nutraceuticals in Veterinary Medicine. Springer, Cham., pp. 287–30110.1007/978-3-030-04624-8_20Search in Google Scholar

Marcondes M.I., Pereira T.R., Chagas J.C.C., Filgueiras E.A., Castro M.M.D., Costa G.P., Sguizzato A.L.L., Sainz R.D. (2016). Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre-and probiotics. Trop. Anim. Health Pro., 48: 1555–1560.Search in Google Scholar

Marden J.P., Julien C., Monteils V., Auclair E., Moncoulon R., Bayourthe C. (2008). How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J. Dairy Sci., 91: 3528–3535.Search in Google Scholar

Matsuguchi T., Takagi A., Matsuzaki T., Nagaoka M., Ishikawa K., Yokokura T., Yoshikai Y. (2003). Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through toll-like receptor 2. Clin. Diagn. Lab. Immunol., 10: 259–266.Search in Google Scholar

Mc Allister T.A., Beauchemin K.A., Alazzeh A.Y., Baah J., Teather R.M., Stanford K. (2011). Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci., 91: 193–211.Search in Google Scholar

Mc Cann J.C., Elolimy A.A., Loor J.J. (2017). Rumen microbiome, probiotics, and fermentation additives. Vet. Clin., 33: 539–553.Search in Google Scholar

Meena R.L., Kaur P., Singh R.D. (2017). Standardization of agrotechniques and biochemical assessment of Crataegus oxyacantha in Western Himalaya. Pharmacogn. J., 9(6s): 69–76.Search in Google Scholar

Mohamadi R., Rahchamani R., Ghanbari F., Farivar F. (2017). Peppermint and pennyroyal essential oil effect on performance, rumen microbial population and some blood parameters of sheep. Iranian J. Vet. Med., 11: 75–84.Search in Google Scholar

Morrison S.J., Dawson S., Carson A.F. (2010). The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livest. Sci., 131: 292–296.Search in Google Scholar

Mosoni P., Chaucheyras-Durand F., Béra-Maillet C., Forano E. (2007). Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J. Appl. Microbiol., 103: 2676–2685.Search in Google Scholar

Niwińska B., Furgal-Dierzuk I., Wieczorek J. (2019). Probiotics in cattle nutrition (in Polish). Wiad. Zoot., 1: 56–67.Search in Google Scholar

Oetzel G.R., Emery K.M., Kautz W.P.Nocek J.E. (2007). Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. J. Dairy Sci., 90: 2058–2068.Search in Google Scholar

Oh J., Hristov A.N. (2016). Effects of plant-derived bio-active compounds on rumen fermentation, nutrient utilization, immune response, and productivity of ruminant animals. In Medicinal and aromatic crops: production, phytochemistry, and utilization. Am. Chem. S., 11:167–186.Search in Google Scholar

Oh J., Wall E.H., Bravo D.M., Hristov A.N. (2017). Host-mediated effects of phytonutrients in ruminants: a review. J. Dairy Sci., 100: 5974–5983.Search in Google Scholar

Ozkaya S., Erbas S., Ozkan O., Baydar H., Aksu T. (2018). Effect of supplementing milk replacer with aromatic oregano (Oreganum onites L.) water on performance, immunity and general health profiles of Holstein calves. Anim. Prod. Sci., 58: 1892–1900.Search in Google Scholar

Patel S., Shukla R., Goyal A. (2015). Probiotics in valorization of innate immunity across various animal models. J. Funct. Foods. 14: 549–61.Search in Google Scholar

Poppy G.D., Rabiee A.R., Lean I.J., Sanchez W.K., Dorton K.L., Morley P.S. (2012). A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci., 95: 6027–6041.Search in Google Scholar

Puniya A.K., Salem A.Z.M., Kumar S., Dagar S.S., Griffith G.W., Puniya M., Ravella S.R., Kumar N., Dhewa T., Kumar R. (2015). Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. J. Integr. Agric., 14: 550–560.Search in Google Scholar

Qiao G., Shao T., Yang X., Zhu X., Li J., Lu Y. (2013). Effects of supplemental Chinese herbs on growth performance, blood antioxidant function and immunity status in Holstein dairy heifers fed high fibre diet. Ital. J Anim. Sci., 12: 120–126.Search in Google Scholar

Radkowska I. (2013). The use of herbs and phytogenic feed additives in feeding livestock (in Polish). Wiad. Zoot., 4: 117–124.Search in Google Scholar

Radzikowski D. (2017). Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Scientific News, 78: 193–198.Search in Google Scholar

Rahchamani R., Faramarzi M., Moslemipor F., Bayat Kohsar J. (2019). Effect of supplementing sheep diet with Glycyrrhiza glabra and Urtica dioica powder on growth performance, rumen bacterial community and some blood biochemical constituents. Iran. J. Applied Anim. Sci., 9: 95–103.Search in Google Scholar

Rajanandh M.G., Kavitha J. (2010). Quantitative estimation of β-sitosterol, total phenolic and flavonoid compounds in the leaves of Moringa oleifera. Int. J. Pharm. Tech. Research., 2: 1409–1414.Search in Google Scholar

Ratre P., Singh R.R., Chaudhary S.S., Chaturvedani A.K., Patel V.R., Hanumant D. (2019). Effect of prebiotic and probiotic supplementation on growth performance and body measurement in pre-ruminant Surti buffalo calves. J. Pharm. Innov, 8: 265–269.Search in Google Scholar

Reddy P.R.K., Elghandour M.M.M.Y., Salem A.Z.M., Yasaswini D., Reddy P.P.R., Reddy A.N., Hyder I. (2020). Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed Sci. Technol., 114469, https://doi.org/10.1016/j.anifeedsci.2020.114469.10.1016/j.anifeedsci.2020.114469Search in Google Scholar

Roodposhti P.M., Dabiri N. (2012). Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australas. J. Anim., 25: 1255–1261.Search in Google Scholar

Sahu J., Yadav A., Kumari T., Pal P., Patel P.K. (2019). Probiotic supplementation to produce healthier calves: A short note. Pharm. Innov. J., 8: 494–495.Search in Google Scholar

Samanta A.K., Senani S., Kolte A.P., Manpal S., Sampath K.T., Natasha J., Devi A. (2012). Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process., 90: 466–474.Search in Google Scholar

Sanchez B., Delgado S., Blanco-Míguez A., Lourenço A., Gueimonde M., Margolles A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res., 61: 160024010.1002/mnfr.20160024027500859Search in Google Scholar

Saparova E., Zubova T. (2019). The effectiveness of phytobiotic additives in the diet of sheep. In IOP Conference Series: Earth and Environmental Science IOP Publishing, 403: 1–10.Search in Google Scholar

Sari N.F., Ridwan R., Fidriyanto R., Astuti W.D., Widyastuti Y. (2019). The effect of probiotics on high fiber diet in rumen fermentation characteristics. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 251: 012057.Search in Google Scholar

Sayed-Ahmed M.E., Farag M.E., El-Sayed F.A., Shaarawy A.M. (2018). Evaluation of using Moringa oleifera plant in goat rations and its impact on productive and reproductive performance. Egypt. J. Sheep Goat Sci., 13: 1–21.Search in Google Scholar

Seckin C., Alpun Kalayci G., Turan N., Yilmaz A., Cizmecigil U.Y., Aydin O., Richt J.A., Yilmaz H. (2018). Immunomodulatory effects of Echinacea and Pelargonium on the innate and adoptive immunity in calves. Food Agric. Immunol. 29: 744–761.Search in Google Scholar

Seo J.K., Kim S.W., Kim M.H., Upadhaya S.D., Ka D.K., H, J.K. (2010). Direct-fed microbials for ruminant animals. Asian-Australas. J. Anim. Sci., 23: 1657–1667.Search in Google Scholar

Sharma R., Sharma S., Shukla P.C., Sharma V., Baghel R.P.S., Raikwar A., Yadav V. (2018). Microbial and functional feed supplement to improve livestock and poultry productivity with special reference to synbiotics: a review. Pharm. Innov. J., 7: 62–68.Search in Google Scholar

Sheikh G.G., Ganai A.M., Ahmad-Sheikh A., Mir D.M. (2019). Rumen microflora, fermentation pattern and microbial enzyme activity in sheep fed paddy straw based complete feed fortified with probiotics. Biol. Rhythm Res., 1–12. doi.org/10.1080/09291016.2019.164401910.1080/09291016.2019.1644019Search in Google Scholar

Siminska E., Bernacka H., Grabowicz M. (2009). Herbs in animal nutrition, including sheep (in Polish). Zesz. Nauk. Zoot., 252: 89–97.Search in Google Scholar

Singh B., Mal G., Gautam S.K., Mukesh M. (2019). Designer probiotics: the next-gen high efficiency biotherapeutics. In Advances in Animal Biotechnology. Springer, Cham., pp. 71–79.10.1007/978-3-030-21309-1_7Search in Google Scholar

Skoufos I., Bonos E., Anastasiou I., Tsinas A., Tzora A. (2020). Effects of phytobiotics in healthy or disease challenged animals. In: Feed Additives Academic Press, pp. 311–337; doi. org/10.1016/B978-0-12-814700-9.00018-2.Search in Google Scholar

Sotek Z., Białecka B., Pilarczyk B., Kruzhel B., Drozd R., Pilarczyk R., Tomza-Marciniak A., Lysak H., Bąkowska M., Vovk S. (2018). The content of selenium, polyphenols and antioxidative activity in selected medicinal plants from Poland and Western Ukraine. Acta Pol. Pharm. Drug. Res., 75: 1107–1116.Search in Google Scholar

Swartz J. (2018). Effects of Enzymatically Hydrolyzed Yeast Supplementation and Supplementation Frequency on Immune Parameters, Performance, and Digestibility among Periparturient Beef Cows and Calves. Electronic Theses And Dissertations.Search in Google Scholar

Tamminen L.M., Emanuelson U., Blanco-Penedo I. (2018). Systematic review of phytotherapeutic treatments for different farm animals under European conditions. Front. Vet. Sci., 140: 1–11.Search in Google Scholar

Tassinari M., Pastò L.F., Sardi L.A. (2007). Effects of mannan oligosaccharides in the diet of beef cattle in the transition period. ISAH, pp. 810–815.Search in Google Scholar

Terré M., Calvo M.A., Adelantado C., Kocher A., Bach A. (2007). Effects of mannan oligosaccharides on performance and microorganism fecal counts of calves following an enhancedgrowth feeding program. Anim. Feed Sci. Technol., 137: 115–125.Search in Google Scholar

Uyeno Y., Shigemori S., Shimosato T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ., 30: 126–132.Search in Google Scholar

Varankovich N.V., Nickerson M.T., Korber D.R. (2015). Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol., 6: 685–699.Search in Google Scholar

Villena J., Kitazawa H. (2014). Modulation of intestinal TLR4-inflammatory signalling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front. Immuno., 4: 512–524.Search in Google Scholar

Vyas D., Uwizeye A., Mohammed R., Yang W.Z., Walker N.D., Beauchemin K.A. (2014). The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci., 92: 724–732.Search in Google Scholar

Wanapat M., Cherdthong A., Pakdee P., Wanapat S. (2008). Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation. J. Anim. Sci., 86: 3497–3503.Search in Google Scholar

Waszkiewicz-Robak B., Obiedziński M., Biller E., Obiedzińska A. (2017). Nutraceuticals in animal nutrition and their effect on selected quality characteristics of beef. A review article. Polish J. Appl. Sci., 3: 73–77.Search in Google Scholar

Weiss W.P., Wyatt D.J., Mc Kelvey T.R. (2008). Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci., 91: 646–652.Search in Google Scholar

Windisch W., Schedle K., Plitzner C., Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 86: 140–148.Search in Google Scholar

Zhang R., Zhou M., Tu Y., Zhang N.F., Deng K.D., Ma T., Diao Q.Y. (2016). Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stressrelated indicators in Holstein calves. J. Anim. Physio. An. N., 100: 33–38.Search in Google Scholar

Zmora P., Cieslak A., Pers-Kamczyc E., Nowak A., Szczechowiak J., Szumacher-Strabel M. (2012). Effect of Mentha piperita L. on in vitro rumen methanogenesis and fermentation. Acta Agr. Scan. A-An., 62: 46–52.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin