Zitieren

Alim M.A., Wang P., Wu X.P., Li C., Cui X.G., Zhang S.L., Zhang Q., Zhang Y., Sun D.X. (2014). Effect of FASN gene on milk yield and milk composition in the Chinese Holstein dairy population. Anim. Genet., 45: 111–113.Search in Google Scholar

Bhuiyan M.S.A., Yu S.L., Jeon J.T., Yoon D., Cho Y.M., Park E.W., Kim N.K., Kim K.S., Lee J.H. (2009). DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australasian J. Anim. Sci., 22: 765–773.Search in Google Scholar

Bonnet M., Faulconnier Y., Leroux C., Jurie C., Cassar-Malek I., Bauchart D., Boulesteix P., Pethick D., Hocquette J.F., Chilliard Y. (2007). Glucose-6-phosphate dehydrogenase and leptin are related to marbling differences among Limousin and Angus or Japanese Black × Angus steers. J. Anim. Sci., 85: 2882–2894.Search in Google Scholar

Bureš D., Bartoň L. (2018). Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci., 214: 231–237.Search in Google Scholar

Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr., 66: 12–21.Search in Google Scholar

Choi N.J., Enser M., Wood J.D., Scollan N.D. (2000). Effect of breed on the deposition in beef muscle and adipose tissue of dietary n-3 polyunsaturated fatty acids. Anim. Sci., 71: 509–519.Search in Google Scholar

Ciecierska D., Frost A., Grzesiak W., Proskura W.S., Dybus A., Olszewski A. (2013). The influence of fatty acid synthase polymorphism on milk production traits in Polish Holstein- Friesian cattle. J. Anim. Plant Sci., 23: 376–379.Search in Google Scholar

Folch J., Lees M., Stanley G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509.Search in Google Scholar

Gromiha M.M., Oobatake M., Kono H., Uedaira H., Sarai A. (2002). Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations. Biopolymers, 64: 210–220.Search in Google Scholar

Jensen-Urstad A.P.L., Semenkovich C.F. (2012). Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1821: 747–753.Search in Google Scholar

Jeong J., Kwon E.G., Im S.K., Seo K.S., Baik M. (2012). Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci., 90: 2044–2053.Search in Google Scholar

Joshi A.K., Rangan V.S., Witkowski A., Smith S. (2003). Engineering of an active animal fatty acid synthase dimer with only one competent subunit. Chem. Biol., 10: 169–173.Search in Google Scholar

Jurie C., Cassar-Malek I., Bonnet M., Leroux C., Bauchart D., Boulesteix P., Pethick D.W., Hocquette J.F. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci., 85: 2660–2669.Search in Google Scholar

Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J. (2012). Template-based protein structure modeling using the RaptorX web server. Nat. Protoc., 7: 1511.Search in Google Scholar

Karolyi D., Dikić M., Salajpal K., Jurić I. (2009). Fatty acid composition of muscle and adipose tissue of beef cattle. Ital. J. Anim. Sci., 8: 264–266.Search in Google Scholar

Kleywegt G.J., Jones T.A. (1996). Phi/psichology: Ramachandran revisited. Structure, 4: 1395–1400.Search in Google Scholar

Kumar S., Dodds P.F. (1981). Fatty acid synthase from lactating bovine mammary gland. Methods Enzymol., 71: 86–97.Search in Google Scholar

Laskowski R.A., Mac Arthur M.W., Thornton J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 26: 283–291.Search in Google Scholar

Li C., Aldai N., Vinsky M., Dugan M.E.R., Mc Allister T.A. (2012). Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Anim. Genet., 43: 93–97.Search in Google Scholar

Lunt D.K., Riley R.R., Smith S.B. (1993). Growth and carcass characteristics of Angus and American Wagyu steers. Meat Sci., 34: 327–334.Search in Google Scholar

Mashiach E., Schneidman-Duhovny D., Andrusier N., Nussinov R., Wolfson H.J. (2008). FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res., 36: 229–232.Search in Google Scholar

Matsumoto H., Inada S., Kobayashi E., Abe T., Hasebe H., Sasazaki S., Oyama K., Mannen H. (2012). Identification of SNPs in the FASN gene and their effect on fatty acid milk composition in Holstein cattle. Livest. Sci., 144: 281–284.Search in Google Scholar

Morris C.A., Cullen N.G., Glass B.C., Hyndman D.L., Manley T.R., Hickey S.M., Mc Ewan J.C., Pitchford W.S., Bottema C.D.K., Lee M.A.H. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome, 18: 64–74.Search in Google Scholar

Navarro H., Goic L. (2003). Seminario hagamos de la lechería un mejor negocio. In: Es negocio criar terneros de lecheria? Series Actas INIA No. 24, pp. 100–105.Search in Google Scholar

Ng-Kwai-Hang K.F., Hayes J.F., Moxley J.E., Monardes H.G. (1986). Relationships between milk protein polymorphisms and major milk constituents in Holstein-Friesian cows. J. Dairy Sci., 69: 22–26.Search in Google Scholar

Oh D., Lee Y., La B., Yeo J., Chung E., Kim Y., Lee C. (2012). Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN. Mol. Biol. Rep., 39: 4083–4090.Search in Google Scholar

Oh D.Y., Nam I., Hwang S., Kong H., Lee H., Ha J., Baik M., Oh M.H., Kim S., Han K., etal. (2018). In vivo evidence on the functional variation within fatty acid synthase gene associated with lipid metabolism in bovine longissimus dorsi muscle tissue. Gen. Genom., 40: 289–294.Search in Google Scholar

Ostrowski B., Deblitz C. (2001). La Competitividad en producción lechera de los países de Chile, Argentina, Uruguay y Brasil. Int. Farm Comp. Network.Search in Google Scholar

Oztabak K., Gursel F.E., Akis I., Ates A., Yardibi H., Turkay G. (2014). FASN gene polymorphism in indigenous cattle breeds of Turkey. Folia Biol., 62: 29–35.Search in Google Scholar

Papaleo Mazzucco J., Goszczynski D.E., Ripoli M.V., Melucci L.M., Pardo A.M., Colatto E., Rogberg-Muñoz A., Mezzadra C.A., Depetris G.J., Giovambattista G., etal. (2016). Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Sci., 114: 121–129.Search in Google Scholar

Paris W., Menezes L.F.G.de, Santos P.V.dos, Kuss F., Silveira M.F.da, Boito B., Venturini T., Stanqueviski F. (2015). Quantitative carcass traits of Holstein calves, finished in different systems and slaughter weights. Ciênc. Rural, 45: 505–511.Search in Google Scholar

Raza S.H.A., Gui L., Khan R., Schreurs N.M., Xiaoyu W., Wu S., Mei C., Wang L., Ma X., Wei D., etal. (2018). Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle. Gene, 645: 55–59.Search in Google Scholar

Rodríguez-Bermúdez R., Miranda M., Orjales I., Rey-Crespo F., Muñoz N., López-Alonso M. (2017). Holstein-Friesian milk performance in organic farming in north Spain: Comparison with other systems and breeds. Spanish J. Agric. Res., 15: 20.Search in Google Scholar

Roy R., Taourit S., Zaragoza P., Eggen A., Rodellar C. (2005). Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): Comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet. Genome Res., 111: 65–73.Search in Google Scholar

Schennink A., Bovenhuis H., Léon-Kloosterziel K.M., Van Arendonk J.A.M., Visker M.H.P.W. (2009). Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim. Genet., 40: 909–916.Search in Google Scholar

Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H.J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 33: 363–367.Search in Google Scholar

Storch J., Mc Dermott L. (2009). Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res., 50: 126–131.Search in Google Scholar

The UniProt (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47: 506–515.Search in Google Scholar

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., etal. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 46: 296–303.Search in Google Scholar

Yeon S.H., Lee S.H., Choi B.H., Lee H.J., Jang G.W., Lee K.T., Kim K.H., Lee J.H., Chung H.Y. (2013). Genetic variation of FASN is associated with fatty acid composition of Hanwoo. Meat Sci., 94: 133–138.Search in Google Scholar

Zhang S., Knight T.J., Reecy J.M., Beitz D.C. (2008). DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim. Genet., 39: 62–70.Search in Google Scholar

Zhu B., Niu H., Zhang W., Wang Z., Liang Y., Guan L., Guo P., Chen Y., Zhang L., Guo Y., etal. (2017). Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics, 18: 464.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin