Uneingeschränkter Zugang

Enhancement of in Vitro Developmental Outcome of Cloned Goat Embryos After Epigenetic Modulation of Somatic Cell-Inherited Nuclear Genome with Trichostatin A


Zitieren

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Singla S.K., Manik R.S. (2018). Epigenetic alteration of donor cells with histone deacetylase inhibitor m-carboxycinnamic acid bishydroxymide improves the in vitro developmental competence of buffalo (Bubalus bubalis) cloned embryos. Cell. Reprogram., 20: 76–88.10.1089/cell.2017.0035Search in Google Scholar

Chies J.M., Polejaeva I.A., Rodrigues J.L., Forell F., Bertolini L.R., Bertolini M. (2016). Developmental outcome and related abnormalities in goats: comparison between somatic cell nuclear transfer- and in vivo-derived concepti during pregnancy through term. Cell. Reprogram., 18: 264–279.Search in Google Scholar

Deng M., Ren C., Liu Z., Zhang G., Wang F., Wan Y. (2017). Epigenetic status of H19-Igf2 imprinted genes and loss of 5-hydroxymethylcytosine in the brain of cloned goats. Cell. Reprogram., 19: 199–207.10.1089/cell.2016.0049Search in Google Scholar

Ding X., Wang Y., Zhang D., Wang Y., Guo Z., Zhang Y. (2008). Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2’-deoxycytidine and trichostatin A. Theriogenology, 70: 622–630.10.1016/j.theriogenology.2008.04.042Search in Google Scholar

Eilertsen K.J., Power R.A., Harkins L.L., Misica P. (2007). Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci., 98: 129–146.10.1016/j.anireprosci.2006.10.019Search in Google Scholar

Fan Z., Yang M., Regouski M., Polejaeva I.A. (2019). Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Methods Mol. Biol., 1874: 373–390.10.1007/978-1-4939-8831-0_22Search in Google Scholar

Fernandes C.C.L., Aguiar L.H., Calderón C.E.M., Silva A.M., Alves J.P.M., Rossetto R., Bertolini L.R., Bertolini M., Rondina D. (2018). Nutritional impact on gene expression and competence of oocytes used to support embryo development and livebirth by cloning procedures in goats. Anim. Reprod. Sci., 188: 1–12.10.1016/j.anireprosci.2017.10.012Search in Google Scholar

Gupta M.K., Heo Y.T., Kim D.K., Lee H.T., Uhm S.J. (2019). 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim. Reprod. Sci., 208: 106118.10.1016/j.anireprosci.2019.106118Search in Google Scholar

Hosseini S.M., Dufort I., Nieminen J., Moulavi F., Ghanaei H.R., Hajian M., Jafarpour F., Forouzanfar M., Gourbai H., Shahverdi A.H., Nasr-Esfahani M.H., Sirard M.A. (2016). Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics, 17: 16.10.1186/s12864-015-2264-zSearch in Google Scholar

Huan Y., Wu Z., Zhang J., Zhu J., Liu Z., Song X. (2015). Epigenetic modification agents improve gene-specific methylation reprogramming in porcine cloned embryos. PLoS One, 10 (6): e0129803.10.1371/journal.pone.0129803Search in Google Scholar

Iager A.E., Ragina N.P., Ross P.J., Beyhan Z., Cunniff K., Rodriguez R.M., Cibelli J.B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells, 10: 371–379.10.1089/clo.2007.0002Search in Google Scholar

Jia R., Zhang G., Fan Y., Zhou Z., Wan Y., Zhang Y., Wang Z., Wang F. (2017). MBD1 and MeCP2 expression in embryos and placentas from transgenic cloned goats. Zygote, 25: 462–471.10.1017/S0967199417000284Search in Google Scholar

Jin J.X., Lee S., Taweechaipaisankul A., Kim G.A., Lee B.C. (2017). The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos. Cell. Physiol. Biochem., 41: 1255–1266.10.1159/000464389Search in Google Scholar

Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.10.1089/cell.2018.0001Search in Google Scholar

Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N.V., Wakayama S., Bui H.T., Wakayama T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun., 340: 183–189.10.1016/j.bbrc.2005.11.164Search in Google Scholar

Kumar D., Sarkhel B.C. (2017). Differential expression pattern of key regulatory developmental genes in pre-implant zona free cloned vs in vitro fertilized goat embryos. Gene Expr. Patterns, 25–26: 118–123.10.1016/j.gep.2017.06.011Search in Google Scholar

Liu Y., Wu F., Zhang L., Wu X., Li D., Xin J., Xie J., Kong F., Wang W., Wu Q., Zhang D., Wang R., Gao S., Li W. (2018). Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics, 19: 734.10.1186/s12864-018-5091-1Search in Google Scholar

Loi P., Iuso D., Czernik M., Ogura A. (2016). A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol., 34: 791–797.10.1016/j.tibtech.2016.03.008Search in Google Scholar

Lu R., Zhang T., Wu D., He Z., Jiang L., Zhou M., Cheng Y. (2018). Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res., 27: 343–354.10.1007/s11248-018-0080-3Search in Google Scholar

Mao T., Han C., Deng R., Wei B., Meng P., Luo Y., Zhang Y. (2018). Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development. Syst. Biol. Reprod. Med., 64: 174–182.10.1080/19396368.2018.1446229Search in Google Scholar

Martins L.T., Neto S.G., Tavares K.C., Calderón C.E., Aguiar L.H., Lazzarotto C.R., Ongaratto F.L., Rodrigues V.H., Carneiro Ide S., Rossetto R., Almeida A.P., Fernandes C.C., Rondina D., Dias A.C., Chies J.M., Polejaeva IA., Rodrigues J.L., Forell F., Bertolini L.R., Bertolini M. (2016). Developmental outcome and related abnormalities in goats: comparison between somatic cell nuclear transfer- and in vivo-derived concepti during pregnancy through term. Cell. Reprogram., 18: 264–279.10.1089/cell.2015.0082Search in Google Scholar

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.10.1016/j.theriogenology.2017.04.022Search in Google Scholar

Qiu X., You H., Xiao X., Li N., Li Y. (2017). Effects of trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos. Cell. Reprogram., 19: 1–9.10.1089/cell.2016.0030Search in Google Scholar

Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78: 1869–1886.10.1016/j.theriogenology.2012.05.030Search in Google Scholar

Saini M., Selokar N.L., Revey T., Singla S.K., Chauhan M.S., Palta P., Madan P. (2014). Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro. Theriogenology, 82: 1036–1042.10.1016/j.theriogenology.2014.07.027Search in Google Scholar

Saini M., Selokar N.L., Agrawal H., Singla S.K., Chauhan M.S., Manik R.S., Palta P. (2017). Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2’-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cell. Reprogram., 19: 208–215.10.1089/cell.2016.0061Search in Google Scholar

Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.10.22358/jafs/67408/2004Search in Google Scholar

Samiec M., Skrzyszowska M. (2010). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.Search in Google Scholar

Samiec M., Skrzyszowska M. (2011). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.10.2478/v10181-011-0050-7Search in Google Scholar

Samiec M., Skrzyszowska M. (2012). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 a). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 b). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.10.24425/119040Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.10.1155/2015/814686Search in Google Scholar

Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141.10.1111/asj.13260Search in Google Scholar

Sangalli J.R., Chiaratti M.R., De Bem T. H., de Araújo R.R., Bressan F.F., Sampaio R.V., Perecin F., Smith L.C., King W.A., Meirelles F.V. (2014). Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One, 9 (6): e101022.10.1371/journal.pone.0101022Search in Google Scholar

Sepulveda-Rincon L.P., Solanas Edel L., Serrano-Revuelta E., Ruddick L., Maalouf W.E., Beaujean N. (2016). Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology, 86: 91–98.10.1016/j.theriogenology.2016.04.022Search in Google Scholar

Wan Y., Deng M., Zhang G., Ren C., Zhang H., Zhang Y., Wang L., Wang F. (2016). Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts. Cell Biol. Int., 40: 74–82.10.1002/cbin.10540Search in Google Scholar

Wang Y.S., Xiong X.R., An Z.X., Wang L.J., Liu J., Quan F.S., Hua S., Zhang Y. (2011). Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2’-deoxycytidine and trichostatin A. Theriogenology, 75: 819–825.10.1016/j.theriogenology.2010.10.022Search in Google Scholar

Wang Y.M., Ding X.B., Liu X.F., Zhang Y. (2015). Donor cell trichostatin A treatment improves the in vitro development of cloned goat embryos. Small Ruminant Res., 124: 76–80.10.1016/j.smallrumres.2015.01.003Search in Google Scholar

Wen B.Q., Li J., Li J.J., Tian S.J., Sun S.C., Qi X., Cai W.T., Chang Q. L. (2014). The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Theriogenology, 81: 332–339.10.1016/j.theriogenology.2013.09.032Search in Google Scholar

Zhang Y.L., Zhang G.M., Jia R.X., Wan Y.J., Yang H., Sun L.W., Han L., Wang F. (2018). Non-invasive assessment of culture media from goat cloned embryos associated with subjective morphology by gas chromatography – mass spectroscopy-based metabolomic analysis. Anim. Sci. J., 89: 31–41.10.1111/asj.12885Search in Google Scholar

Zuo Y., Su G., Cheng L., Liu K., Feng Y., Wei Z., Bai C., Cao G., Li G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8: 65847–65859.10.18632/oncotarget.19504Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin