Uneingeschränkter Zugang

Effects of Microalgae Species on In Vitro Rumen Fermentation Pattern and Methane Production

   | 28. Jan. 2020

Zitieren

Anele U.Y., Yang W.Z., Mcginn P.J., Tibbetts S.M., Mcallister T.A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci., 96: 354–363.Search in Google Scholar

AOAC (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, Vo, 1990.Search in Google Scholar

AOAC (2012). Fat (crude) or ether extraction in animal feed, in: Official Methods of Analysis of AOAC International, 19th ed., AOAC International, Gaithersburg, MD, USA.Search in Google Scholar

Bach A., Calsamiglia S., Stern M.D. (2005). Nitrogen metabolism in the rumen. J. Dairy. Sci., 88: E9–E21.Search in Google Scholar

Baker S.K. (1999). Rumen methanogens and inhibition of methanogenesis. Aust. J. Agric. Res., 50: 1293–1298.Search in Google Scholar

Beauchemin K.A., Kreuzer M., O ‘ Mara F., Mc Allister T.A. (2008). Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric., 48: 21–27.Search in Google Scholar

Boeckaert C., Vlaeminck B., Dijkstra J., Issa-Zacharia A., Van Nespen T., Van Straalen W., Fievez V. (2008). Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy. Sci., 91: 4714–4727.Search in Google Scholar

Boguhn J., Zuber T., Rodehutscord M. (2013). Effect of donor animals and their diet on in vitro nutrient degradation and microbial protein synthesis using grass and corn silages. J Anim. Physiol. Anim. Nutr., 97: 547–557.Search in Google Scholar

Bohutskyi P., Betenbaugh M.J., Bouwer E.J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol., 155: 366–372.Search in Google Scholar

Chalupa W. (1977). Manipulating rumen fermentation. J. Anim. Sci., 46: 585–599.Search in Google Scholar

Cottle D., Nolan J., Wiedemann S. (2011). Ruminant enteric methane mitigation, a review. Anim. Prod. Sci., 51: 491–514.Search in Google Scholar

de Macario E.C., Macario A.J.L. (2009). Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int. J. Med. Microbiol., 299: 99–108.Search in Google Scholar

Dubois B., Tomkins N., Kinley R.D., Bai M., Seymour S., Paul N.A., Nys R. (2013). Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am. J. Plant Sci., 4: 34–43.Search in Google Scholar

Durmic Z., Moate P.J., Eckard R., Revell D.K., Williams R., Vercoe P.E. (2014). In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric., 94: 1191–1196.Search in Google Scholar

Fievez V., Boeckaert C., Vlaeminck B., Mestdagh J., Demeyer D. (2007). In vitro examination of DHA-edible micro-algae, 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol., 136: 80–95.Search in Google Scholar

Han K.J., Mc Cormick M.E. (2014). Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J. Anim. Sci. Biotechnol., 5: 31.Search in Google Scholar

Horwitz W. (1975). Official Methods of analysis of the Association of Official Analytical Chemists, AOAC, Washington, DC, USA.Search in Google Scholar

Isaac A.R., Johnson W.C. (1998). Elemental Determination by Inductively Coupled Plasma Atomic Emission Spectrometry, Handbook of Reference Methods for Plant Analysis. Ed. Karla, Y.P. – CRC Press, Washington, D.C., pp.165–170.Search in Google Scholar

Kholif A., Morsy T., Matloup O., Anele U., Mohamed A., El-Sayed A. (2017). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci., 155: 508–518.Search in Google Scholar

Kinley R.D., de Nys R., Vucko M.J., Machado L., Tomkins N.W. (2016). The red macroalgae Asparagopsistaxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci., 56: 282–289.Search in Google Scholar

Kotrbáček V., Doubek J., Doucha J. (2015). The chlorococcalean alga Chlorella in animal nutrition, a review. J. Appl. Phycol., 27: 2173–2180.Search in Google Scholar

Lodge-Ivey S.L., Tracey L.N., Salazar A. (2014). The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J. Anim. Sci., 92: 1331–1342.Search in Google Scholar

Lum K.K., Kim J., Lei X.G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol., 4: 53.Search in Google Scholar

Machado L., Magnusson M., Paul N.A., de Nys R., Tomkins N.W. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. Plos One 9: e85289.Search in Google Scholar

Maia M.R.G., Fonseca A.J.M., Oliveira H.M., Mendonça C., Cabrita A.R.J. (2016). The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep., 6: 32321.Search in Google Scholar

Medipally S.R., Yusoff F.M., Banerjee S., Shariff M. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Res. Int. 13 pp.10.1155/2015/519513438561425874216Search in Google Scholar

Menke K.H., Steingass H. (1987). Schtzung des energetischen Futterwerts aus der in vitro mit Pansensaft bestimmten Gasbildung und der chemischen Analyse. II. Regressions gleichungen. Übers Tierernӓhrg 15: 59–94.Search in Google Scholar

Menke K.H., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop., 28: 7–55.Search in Google Scholar

Moate P.J., Williams S.R., Hannah M.C., Eckard R.J., Auldist M.J., Ribaux B.E., Jacobs J. L., Wales W.J. (2013). Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy. Sci., 96: 3177–3188.Search in Google Scholar

Monteny G.J., Bennink A., Chadwick D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ., 112: 163–170.Search in Google Scholar

National Research Council. (2001). Nutrient Requirements of Dairy Cattle. 2001. National Academy of Sciences. 6th Rev Ed. Washington, D.C. https://doi.org/10.17226/9825.10.17226/9825Search in Google Scholar

Piorreck M., Baasch K.H., Pohl P. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemist., 23: 207–216.Search in Google Scholar

Tsiplakou E., Abdullah M.A.M., Skliros D., Chatzikonstantinou M., Flemetakis E., Labrou N., Zervas G. (2017). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr., 101: 275–283.Search in Google Scholar

Van Kessel J.A.S., Russell J.B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol., 20: 205–210.Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy. Sci., 74: 3583–3597.Search in Google Scholar

Wild K.J., Steingaß H., Rodehutscord M. (2019). Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and non-disrupted microalgae for ruminants. GCB Bioenergy, 11: 345–359.Search in Google Scholar

Wu S., Feng X., Wittmeier A. (1997). Microwave digestion of plant and grain reference materials in nitric acid or a mixture of nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry. J. Anal. Atom Spectrom., 12: 797–806.Search in Google Scholar

Yan L., Lim S.U., Kim I.H. (2012). Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australas. J. Anim. Sci., 25: 1742–1747.Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin