Zitieren

Blauer K.L., Poth M., Rogers W.M., Bernton E.W. (1991). Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology, 129: 3174–3179.10.1210/endo-129-6-3174Search in Google Scholar

Bortolotti G.R., Marchant T.A., Blas J., German T. (2008). Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct. Ecol., 22: 494–500.10.1111/j.1365-2435.2008.01387.xSearch in Google Scholar

Comin A., Peric T., Corazzin M., Veronesi M.C., Meloni T., Zufferli V., Cornacchia G., Prandi A. (2013). Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised. Livest. Sci., 152: 36–41.10.1016/j.livsci.2012.11.021Search in Google Scholar

Fairhurst G.D., Frey M.D., Reichert J.F., Szelest I., Kelly D.M., Bortolotti G.R. (2011). Does environmental enrichment reduce stress? An integrated measure of corticosterone from feathers provides a novel perspective. PLoS One, 6: e17663.10.1371/journal.pone.0017663Search in Google Scholar

Flament A., Delleur V., Poulipoulis A., Marlier D. (2012). Corticosterone, cortisol, triglycerides, aspartate aminotransferase and uric acid plasma concentrations during foie gras production in male mule ducks (Anas platyrhynchos × Cairina moschata). Brit. Poultry Sci., 53: 408–413.10.1080/00071668.2012.711468Search in Google Scholar

Gallagher P., Leitch M.M., Massey A.E., McAllister-Williams R.H., Young A.H. (2006). Assessing cortisol and dehydroepiandrosterone (DHEA) in saliva: effects of collection method. J. Psychopharmacol., 20: 643–649.10.1177/0269881106060585Search in Google Scholar

Galuppi R., Leveque J.F., Beghelli V., Bonoli C., Mattioli M., Ostanello F., Tampieri M.P., Accorsi P.A. (2013). Cortisol levels in cats’ hair in presence or absence of Microsporum canis infection. Res. Vet. Sci., 95: 1076–1080.10.1016/j.rvsc.2013.07.023Search in Google Scholar

Gervasi S.S., Burgan S.C., Hofmeister E., Unnasch T.R., Martin L.B. (2017). Stress hormones predict a host superspreader phenotype in the West Nile virus system. Proc. Biol. Sci., 284: 20171090.10.1098/rspb.2017.1090Search in Google Scholar

Goodyer I.M., Herbert J., Altham P.M. (1998). Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychol. Med., 28: 265–273.10.1017/S0033291797006314Search in Google Scholar

Griffiths R., Double M.C., Orr K., Dawson R J. (1998). A DNA test to sex most birds. Mol. Ecol., 7: 1071–1075.10.1046/j.1365-294x.1998.00389.xSearch in Google Scholar

Harms N.J., Legagneux P., Gilchrist H., Bêty J., Love O.P., Forbes M., Bortolotti G.R., Soos C. (2015). Feather corticosterone reveals effect of moulting conditions in the autumn on subsequent reproductive output and survival in an Arctic migratory bird. Proc. Biol. Sci., 282: 20142085.10.1098/rspb.2014.2085Search in Google Scholar

Harriman V.B., Dawson R.D., Clark R.G., Fairhurst G.D., Bortolotti G.R. (2014). Effects of ectoparasites on seasonal variation in quality of nestling Tree Swallows (Tachycineta bicolor). Can. J. Zool., 92: 87–96.10.1139/cjz-2013-0209Search in Google Scholar

Hechter O., Grossman A., Chatterton R.T. Jr. (1997). Relationship of dehydroepiandrosterone and cortisol in disease. Med. Hypotheses, 49: 85–91.10.1016/S0306-9877(97)90258-9Search in Google Scholar

Hinkle D.E., Jurs S.G., Wiersma W. (2003). Applied statistics for the behavioral sciences. Boston, USA, Houghton Mifflin, 5th ed., 756 pp.Search in Google Scholar

Houston D.C. (1975). The moult of the White-backed and Rüppell’s Griffon vultures Gyps africanus and G. Rueppellii. Ibis, 117: 474–488.10.1111/j.1474-919X.1975.tb04240.xSearch in Google Scholar

Hu Y., Cardounel A., Gursoy E., Anderson P., Kalimi M. (2000). Anti-stress effects of dehydroepiandrosterone: protection of rats against repeated immobilization stress-induced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem. Pharmacol., 59: 753–762.10.1016/S0006-2952(99)00385-8Search in Google Scholar

Huber K. (2018). Invited review: resource allocation mismatch as pathway to disproportionate growth in farm animals – prerequisite for a disturbed health. Animal, 12: 528–536.10.1017/S1751731117002051Search in Google Scholar

IUCN (2012). Gyps fulvus. Liste rosse italiane. (http://www.iucn.it/scheda.php?id=-1607566788).Search in Google Scholar

Jenni-Eiermann S., Helfenstein F., Vallat A., Glauser G., Jenni L. (2015). Corticosterone: effects on feather quality and deposition into feathers. Methods Ecol. Evol., 6: 237–246.10.1111/2041-210X.12314Search in Google Scholar

Kalimi M., Shafagoj Y., Loria R., Padgett D., Regelson W. (1994). Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem., 131: 99–104.10.1007/BF00925945Search in Google Scholar

Kennedy E.A., Lattin C., Romero L., Dearborn D. (2013). Feather coloration in museum specimens is related to feather corticosterone. Behav. Ecol. Sociobiol., 67: 341–348.10.1007/s00265-012-1454-9Search in Google Scholar

Kitaysky A.S., Kitaiskaia E.V., Piatt J.F., Wingfield J.C. (2003). Benefits and costs of increased levels of corticosterone in seabird chicks. Horm. Behav., 43: 140–149.10.1016/S0018-506X(02)00030-2Search in Google Scholar

Koren L., Nakagawa S., Burke T., Soma K.K., Wynne-Edwards K.E., Geffen E. (2012). Non-breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. Proc. Biol. Sci., 279: 1560–1566.10.1098/rspb.2011.2062Search in Google Scholar

Kouwenberg A.L., Hipfner J.M., Mc Kay D.W., Storey A.E. (2013). Corticosterone and stable isotopes in feathers predict egg size in Atlantic Puffins Fratercula arctica. Ibis, 155: 413–418.10.1111/ibi.12030Search in Google Scholar

Kroboth P.D., Salek F.S., Pittenger A.L., Fabian T.J., Frye R.F. (1999). DHEA and DHEA-S: a review. J. Clin. Pharmacol., 39: 327–348.10.1177/00912709922007903Search in Google Scholar

Labrie F., Luu-The V., Martel C., Chernomoretz A., Calvo E., Morissette J., Labrie C. (2006). Dehydroepiandrosterone (DHEA) is an anabolic steroid like dihydrotestosterone (DHT), the most potent natural androgen, and tetrahydrogestrinone (THG). J. Steroid Biochem. Mol. Biol., 100: 52–58.10.1016/j.jsbmb.2006.03.006Search in Google Scholar

Landys M.M., Ramenofsky M., Wingfield J.C. (2006). Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol., 148: 132–149.10.1016/j.ygcen.2006.02.013Search in Google Scholar

Maninger N., Wolkowitz O.M., Reus V.I., Epel E.S., Mellon S.H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol., 30: 65–91.10.1016/j.yfrne.2008.11.002Search in Google Scholar

Mc Ewen B.S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev., 87: 873–904.10.1152/physrev.00041.2006Search in Google Scholar

Mc Ewen B.S., Wingfield J.C. (2003). The concept of allostasis in biology and biomedicine. Horm. Behav., 43: 2–15.10.1016/S0018-506X(02)00024-7Search in Google Scholar

Meitern R., Sild E., Lind M.A., Männiste M., Sepp T., Karu U., Hõrak P. (2013). Effects of endotoxin and psychological stress on redox physiology, immunity and feather corticosterone in greenfinches. PLoS One, 8: e67545.10.1371/journal.pone.0067545Search in Google Scholar

Monclús L., Ballesteros-Cano R., DeLaPuente J., Lacorte S., Lopez-Bejar M. (2018). Influence of persistent organic pollutants on the endocrine stress response in free-living and captive red kites (Milvus milvus). Environ. Pollut., 242: 329–337.10.1016/j.envpol.2018.06.086Search in Google Scholar

Mougeot F., Martinez-Padilla J., Bortolotti G.R., Webster L.M., Piertney S.B. (2010). Physiological stress links parasites to carotenoid-based colour signals. J. Evol. Biol., 23: 643–650.10.1111/j.1420-9101.2009.01926.xSearch in Google Scholar

Newman A.E., Soma K.K. (2009). Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress. Eur. J. Neurosci., 29: 1905–1914.10.1111/j.1460-9568.2009.06748.xSearch in Google Scholar

Newman A.E., Pradhan D.S., Soma K.K. (2008). Dehydroepiandrosterone and corticosterone are regulated by season and acute stress in a wild songbird: jugular versus brachial plasma. Endocrinology, 149: 2537–2545.10.1210/en.2007-1363Search in Google Scholar

Newman A.E., Zanette L.Y., Clinchy M., Goodenough N., Soma K.K. (2013). Stress in the wild: chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird. Stress, 16: 363–367.10.3109/10253890.2012.723076Search in Google Scholar

Novak M.A., Hamel A.F., Coleman K., Lutz C.K., Worlein J., Menard M., Ryan A., Rosenberg K., Meyer J.S. (2014). Hair loss and hypothalamic-pituitary-adrenocortical axis activity in captive rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci., 53: 261–266.Search in Google Scholar

Poisbleau M., Lacroix A., Chastel O. (2009). DHEA levels and social dominance relationships in wintering brent geese (Branta bernicla bernicla). Behav. Processes, 80: 99–103.10.1016/j.beproc.2008.08.002Search in Google Scholar

Qiao S., Li X., Zilioli S., Chen Z., Deng H., Pan J., Guo W. (2017). Hair measurements of cortisol, DHEA, and DHEA to cortisol ratio as biomarkers of chronic stress among people living with HIV in China: Known-group validation. PLoS One, 12: e0169827.10.1371/journal.pone.0169827Search in Google Scholar

Rauw W.M. (2012). Immune response from a resource allocation perspective. Front. Genet., 3: 267.10.3389/fgene.2012.00267Search in Google Scholar

Romero L.M., Fairhurst G.D. (2016). Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 202: 112–122.10.1016/j.cbpa.2016.05.002Search in Google Scholar

Sapolsky R.M., Romero L.M., Munck A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 21: 55–89.10.1210/edrv.21.1.0389Search in Google Scholar

Sild E., Meitern R., Manniste M., Karu U., Horak P. (2014). High feather corticosterone indicates better coccidian infection resistance in greenfinches. Gen. Comp. Endocrinol., 204: 203–210.10.1016/j.ygcen.2014.05.026Search in Google Scholar

Van Uum S.H., Sauve B., Fraser L.A., Morley-Forster P., Paul T.L., Koren G. (2008). Elevated content of cortisol in hair of patients with severe chronic pain: a novel biomarker for stress. Stress, 11: 483–488.10.1080/10253890801887388Search in Google Scholar

Wingfield J.C. (2013). Ecological processes and the ecology of stress: the impacts of abiotic environmental factors. Funct. Ecol., 27: 37–44.10.1111/1365-2435.12039Search in Google Scholar

Wingfield J.C., Sapolsky R.M. (2003). Reproduction and resistance to stress: when and how. J. Neuroendocrinol., 15: 711–724.10.1046/j.1365-2826.2003.01033.xSearch in Google Scholar

Wolkowitz O.M., Epel E.S., Reus V.I. (2001). Stress hormone-related psychopathology: patho-physiological and treatment implications. World J. Biol. Psychiatry, 2: 115–143.10.3109/15622970109026799Search in Google Scholar

Wright B.E., Porter J.R., Browne E.S., Svec F. (1992). Antiglucocorticoid action of dehydroepiandrosterone in young obese Zucker rats. Int. J. Obes. Relat. Metab. Disord., 16: 579–583.Search in Google Scholar

Zuberogoitia I., De La Puente J., Elorriaga J., Alonso R., Palomares L.E., Martínez J.E. (2013). The flight feather molt of Griffon Vultures (Gyps fulvus) and associated biological consequences. J. Raptor Res., 47: 292–303.10.3356/JRR-12-09.1Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin