Zitieren

Adetuyi F.O., Ibrahim T.A. (2014). Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. NIFOJ, 32: 128–137.10.1016/S0189-7241(15)30128-4Search in Google Scholar

Aebi H. (1984). Catalase in vitro. Meth. Enzymol., 105: 121–126.10.1016/S0076-6879(84)05016-3Search in Google Scholar

Cui Y., Wang Q., Sun R., Guo L., Wang M., Jia C., Xu J., Wu R. (2018). Astragalus membranaceus (Fisch.) Bunge repairs intestinal mucosal injury induced by LPS in mice. BMC Complement Altern. Med., 18: 230–236.10.1186/s12906-018-2298-2Search in Google Scholar

Dam R.M. (2008). Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl. Physiol. Nutr. Metab., 33: 1269–1283.10.1139/H08-120Search in Google Scholar

Daoguang X., Jianguo Q., Yufen Y. (2015). Effects of fermented soybean meal on growth performance, serum biochemical index and fecal compounds in fattening pig. Swine Prod. 5: 25–43.Search in Google Scholar

Dhama K., Verma V., Sawant P.M., Tiwari R., Vaid R.K., Chauhan R.S. (2011). Applications of probiotics in poultry: enhancing immunity and beneficial effects on production performances and health – a review. J. Immuol. Immunopath., 13: 1–19.Search in Google Scholar

Drażbo A., Mikulski D., Jankowski J., Zduńczyk Z. (2018 a). The effect of diets containing raw and fermented faba beans on gut functioning and growth performance in young turkeys. J. Anim. Feed Sci., 27: 65–73.10.22358/jafs/82779/2018Search in Google Scholar

Drażbo A., Ognik K., Zaworska A., Ferenc K., Jankowski J. (2018 b). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Sci., 97: 3910–3920.10.3382/ps/pey25029917099Search in Google Scholar

Engberg R.M., Hammershøj M., Johansen N.F., Abousekken M.S., Steenfeldt S., Jensen B.B. (2009). Fermented feed for laying hens: effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. Brit. Poultry. Sci., 50: 228–239.10.1080/00071660902736722Search in Google Scholar

Feng J., Liu X., Lu Y.P., Liu Y.Y. (2007 a). Effects of fermented soybean meal on growth, serum parameters and the intestine morphology in weaned piglet. Chin. J. Anim. Nutr., 1: 58–74.Search in Google Scholar

Feng J., Liu Z.R., Xu Y., Liu Y., Lu Y.P. (2007 b). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol., 134: 235–242.10.1016/j.anifeedsci.2006.08.018Search in Google Scholar

Gnikpo A.F., Chrysostome C.A., Houndonougbo M.F., Adenile D.A., Dougnon J., Libanio D. (2016). Efficacy of feed ingredient with probiotics properties, on the growth performance and health of giant white bouscat red eye rabbits. J. Anim. Vet. Adv., 6: 889–889.10.5455/japa.20160109123502Search in Google Scholar

Heres L., Wagenaar J.A., Van Knapen F., Urlings B. (2003). Passage of Salmonella through the group and gizzard of broiler chickens fed with fermented liquid feed. Avian Pathol., 32: 173–181.10.1080/0307945021000071597Search in Google Scholar

Hong K.J., Lee C.H., Kim S.W. (2004). Aspergillus oryzae 3.042GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food, 7: 430–434.10.1089/jmf.2004.7.430Search in Google Scholar

Hou Y., Wang L., Yi D., Ding B., Yang Z., Li J., Chen X., Qiu Y., Wu G. (2013). N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids, 45: 513–522.10.1007/s00726-012-1295-xSearch in Google Scholar

Hu Y., Wang Y., Li A., Wang Z., Zhang X., Yun T. (2016). Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol., 27: 182–193.10.1080/09540105.2015.1079592Search in Google Scholar

Hung A., Su T., Liso C. (2008). Effect of probiotic combination fermented soybean meal on growth performance lipid metabolism and immunological response of growing finishing pigs. Asian J. Anim. Vet. Adv., 3: 421–436.10.3923/ajava.2008.431.436Search in Google Scholar

Hur S.J., Lee S.Y., Kim Y.C., Choi I., Geun-Bae Kim G.B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem., 160: 346–356.10.1016/j.foodchem.2014.03.112Search in Google Scholar

Jazi V., Boldaji F., Dastar B., Hashemi S.R., Ashayerizadeh A. (2017). Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Brit. Poultry Sci., 58: 402–408.10.1080/00071668.2017.1315051Search in Google Scholar

Jazi V., Ashayerizadeh A., Toghyani M., Shabani A., Tellez G., Toghyani M. (2018). Fermented soybean meal exhibits probiotic properties when included in Japanese quail diet in replacement of soybean meal. Poultry Sci., 97: 2113–2122.10.3382/ps/pey071Search in Google Scholar

Kim S.W., Van Heugten E., Ji F., Lee C.H., Mateo R.D. (2010). Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs. J. Anim. Sci., 88: 214–224.10.2527/jas.2009-1993Search in Google Scholar

Liu X., Feng J., Xu Z., Lu Y., Liu Y. (2007). The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci., 31: 341–334.Search in Google Scholar

Liu H.M., Liao J.F., Lee T.Y. (2017). Farnesoid X receptor agonist GW4064 ameliorates lipopoly-saccharide-induced ileocolitis through TLR4/MyD88 pathway related mitochondrial dysfunction in mice. Biochem. Biophys. Res. Commun., 490: 841–848.10.1016/j.bbrc.2017.06.129Search in Google Scholar

Mathivanan R., Selvaraj P., Nanjappan K. (2006). Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci., 5: 868–872.10.3923/ijps.2006.868.872Search in Google Scholar

Matsuzaki K., Chin J. (2000). Modulating immune responses with probiotic bacteria. Immunol. Cell Biol., 78: 67–73.10.1046/j.1440-1711.2000.00887.xSearch in Google Scholar

Missotten J., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J. Anim. Sci. Biotechnol., 6: 4–9.10.1186/2049-1891-6-4Search in Google Scholar

Montagne L., Pluske J.R., Hampson D.J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol., 108: 95–117.10.1016/S0377-8401(03)00163-9Search in Google Scholar

Niba A.T., Beal J.D., Kudi A.C. (2009). Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates. Trop. Anim. Health Prod., 41: 1393–1407.10.1007/s11250-009-9327-6Search in Google Scholar

Nowak-Węgrzyn A., Katz Y., Mehr S.S., Koletzko S. (2015). Non-IgE-mediated gastro-intestinal food allergy. J. Allergy Clin. Immunol., 135: 1114–1124.10.1016/j.jaci.2015.03.025Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Pluske J.R., Williams I.H., Aherne F.X. (1996). Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci., 62: 131–144.10.1017/S1357729800014417Search in Google Scholar

Qingbao A., Deyi L., Qiong G., Benyu H., Fei Z. (2007). Effect of soybean isoflavones on antioxidant activity in crossbred chickens. J. Anhui Agric. Univ., 9: 20–25.Search in Google Scholar

Scholten R.H.J., van der Peet-Schwering C.M.C., den Hartog L.A., Balk M., Schrama J.W., Verstegen M.W. (2002). Effect of lactic acid fermented soyabean meal on the growth performance, intestinal microflora and morphology of weaned piglets. Anim. Sci., 80: 1179–1186.10.2527/2002.8051179xSearch in Google Scholar

Smulikowska S., Rutkowski A. (2005). Editors. Recommended allowances and nutritive value of feedstuffs. Poultry feeding standards (in Polish). 4th ed. The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Jabłonna (Poland).Search in Google Scholar

Tavárez M.A., Boler D.D., Bess N., Zhao J., Yan F., Dilger A.C., Mckeith F., Killefer J. (2018). Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation. Poultry Sci., 90: 922–930.10.3382/ps.2010-01180Search in Google Scholar

Wang L.C., Wen C., Jiang Z.Y., Zhou Y.M. (2012). Evaluation of the partial replacement of high-protein feedstuff with fermented soybean meal in broiler diets. J. Appl. Poult. Res., 21: 849–855.10.3382/japr.2012-00563Search in Google Scholar

Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. (2003). Effects of dietary fructooligo-saccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Sci., 82: 648–654.10.1093/ps/82.6.1030Search in Google Scholar

Xu F., Li L., Xu J., Qian K., Zhang Z., Liang Z. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian-Australas. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458Search in Google Scholar

Xue Z.H., Yu W.C., Wu M.C., Wang J.H. (2009). In vivo antitumor and antioxidative effects of a rapeseed meal protein hydrolysate on an S180 tumor-bearing murine model. Biosci. Biotechnol. Biochem., 73: 2412–2415.10.1271/bbb.90374Search in Google Scholar

Zhang H.Y., Yi J.Q., Piao X.S., Li P.F., Zeng Z.K., Wang D., Liu L., Wang G.Q., Han X. (2013). The metabolizable energy value, standardized ileal digestibility of amino acids in soybean meal, soy protein concentrate and fermented soybean meal, and the application of these products in early-weaned piglets. Asian-Australas. J. Anim. Sci., 26: 691–699.10.5713/ajas.2012.12429Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin