Zitieren

[1] Leonhardt, A. Gröndahl, K. Bergström, C. Lekholm, U. (2002), Long-term follow-up of osseointegrated titanium implants using clinical, radiographic and microbiological parameters, Clinical oral implants research Vol. 13, pp. 127–132. Search in Google Scholar

[2] Frost, H.M. (2004), An update of bone physiology and Wolff’s Law for clinicians, The Angle orthodontist Vol. 74, pp. 3–15. Search in Google Scholar

[3] Peter I. (2021), Investigations into Ti-Based Metallic Alloys for Biomedical Purposes, Metals vol. 11, pp. 1-15. Search in Google Scholar

[4] Misch, C.E. Qu, Z. Bidez, M.W. (1999), Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. Journal of oral and maxillofacial surgery, Official journal of the American Association of Oral and Maxillofacial Surgeons Vol. 57, 700–6, pp. 706–708.10.1016/S0278-2391(99)90437-8 Search in Google Scholar

[5] Liu, C. Lin, J. Tang, L. Liu, Z. Jiang, Z. Lian, K. (2021), Design of metal-polymer structure for dental implants with stiffness adaptable to alveolar bone, Composites Communications Vol. 24, pp. 100-108. Search in Google Scholar

[6] Kilambi, H. Cramer, N.B. Schneidewind, L.H.;Shah, P. Stansbury, J.W. Bowman, C.N. (2009), Evaluation of highly reactive monomethacrylates as reactive diluents for BisGMA-based dental composites, Dental materials: official publication of the Academy of Dental Materials Vol. 25, pp. 33–38. Search in Google Scholar

[7] Ilie, N. Keßler, A. Durner, J. (2013), Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites, Journal of dentistry Vol. 41, pp. 695–702.10.1016/j.jdent.2013.05.00823707645 Search in Google Scholar

[8] Goracci, C. Cadenaro, M. Fontanive, L. Giangrosso, G. Juloski, J. Vichi, A. Ferrari, M. (2014), Polymerization efficiency and flexural strength of low-stress restorative composites, Dental materials: official publication of the Academy of Dental Materials Vol. 30, pp. 688–694. Search in Google Scholar

[9] Monterubbianesi, R. Orsini, G. Tosi, G. Conti, C. Librando, V. Procaccini, M. Putignano, A. (2016), Spectroscopic and Mechan Properties of a New Generation of Bulk Fill Composites, Frontiers in Physiology Vol. 7, pp. 652-658. Search in Google Scholar

[10] Mazzoni, A. Angeloni, V. Comba, A. Maravic, T. Cadenaro, M. Tezvergil-Mutluay, A. Pashley, D.H.;Tay, F.R. Breschi, L. (2017), Cross-linking effect on dentin bond strength and MMPs activity, Dental materials: official publication of the Academy of Dental Materials Vol. 34, pp. 288–295. Search in Google Scholar

[11] Guazzato, M. Albakry, M. Ringer, S.P. Swain, M.V. (2004), Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics, Dental materials: official publication of the Academy of Dental Materials Vol. 20, pp. 449–456. Search in Google Scholar

[12] Orsini, G. Procaccini, M. Manzoli, L. Sparabombe, S. Tiriduzzi, P. Bambini, F. Putignano, A. (2013), A 3-day randomized clinical trial to investigate the desensitizing properties of three dentifrices, Journal of periodontology Vol. 84, pp. 65–73. Search in Google Scholar

[13] Lelli, M. Putignano, A. Marchetti, M. Foltran, I. Mangani, F. Procaccini, M. Roveri, N. Orsini, G. (2014), Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study, Frontiers in physiology Vol. 5, pp. 333-341.10.3389/fphys.2014.00333415587425249980 Search in Google Scholar

[14] Fioretti, F. Mendoza-Palomares, C. Avoaka-Boni, M.C. Ramaroson, J. Bahi, S. Richert, L.; Granier, F. Benkirane-Jessel, N. Haikel, Y. (2011), Nano-odontology: nanostructured assemblies for endodontic regeneration, Journal of biomedical nanotechnology Vol. 7, pp. 471–475. Search in Google Scholar

[15] Luiz de Oliveira da Rosa, W. Machado da Silva, T. Fernando Demarco, F. Piva, E. Fernandes da Silva, A. (2017), Could the application of bioactive molecules improve vital pulp therapy success? A systematic review, Journal of biomedical materials research. Part A Vol. 105, pp. 941–956. Search in Google Scholar

[16] Jiménez-Rojo, L. Granchi, Z.; Graf, D. Mitsiadis, T.A. (2012), Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs, Frontiers in physiology Vol. 3, pp. 107-112. Search in Google Scholar

[17] Oshima, M. Tsuji, T. (2014), Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement, Odontology Vol. 102, pp. 123–136.10.1007/s10266-014-0168-z25052182 Search in Google Scholar

[18] Otsu, K.; Kumakami-Sakano, M. Fujiwara, N. Kikuchi, K. Keller, L. Lesot, H. Harada, H. (2014), Stem cell sources for tooth regeneration: current status and future prospects, Frontiers in Physiology Vol. 5, pp. 36-42. Search in Google Scholar

[19] Mitsiadis, T.A. Harada, H. (2015), Regenerated teeth: the future of tooth replacement. An update, Regenerative medicine Vol. 10, pp. 5–8.10.2217/rme.14.7825562346 Search in Google Scholar

[20] Bluteau, G. Luder, H.U. De Bari, C. Mitsiadis, T.A (2008), Stem cells for tooth engineering, European cells & materials Vol. 16, pp. 1–9. Search in Google Scholar

[21] Koyama, J. Fukazawa, K. Ishihara, K. Mori, Y. (2019), In situ surface modification on dental composite resin using 2-methacryloyloxyethyl phosphorylcholine polymer for controlling plaque formation, Materials science & engineering. C, Materials for biological applications, Vol. 104, pp.109916-109922.10.1016/j.msec.2019.10991631499946 Search in Google Scholar

[22] Monjarás-Ávila, A.J. Sanchez-Olivares, G. Calderas, F. Moreno, L. Zamarripa-Calderón, J.E. Cuevas-Suárez, C.E. Rivera-Gonzaga, (2020), A. Sodium montmorillonite concentration effect on Bis-GMA/TEGDMA resin to prepare clay polymer nanocomposites for dental applications, Applied Clay Science Vol. 196, pp. 105755-105762. Search in Google Scholar

[23] Piedra-Cascón, W. Sadeghpour, M. Att, W. Revilla-León, M. (2021), A vat-polymerized 3-dimensionally printed dual-material occlusal device: A dental technique, The Journal of prosthetic dentistry, pp. 271-275. Search in Google Scholar

[24] Wang, F. Guo, J. Li, K. Sun, J. Zeng, Y. Ning, C. (2019), High strength polymer/silicon nitride composites for dental restorations, Dental Materials Vol. 35, pp. 1254–1263. Search in Google Scholar

[25] Barcelos, L.M. Borges, M.G. Soares, C.J. Menezes, M.S. Huynh, V. Logan, M.G. Fugolin, A.P.P. Pfeifer, C.S. (2020), Effect of the photoinitiator system on the polymerization of secondary methacrylamides of systematically varied structure for dental adhesive applications, Dental materials: official publication of the Academy of Dental Materials Vol. 36, pp. 468–477. Search in Google Scholar

[26] Xing, A. Sun, Q. Meng, Y. Zhang, Y. Li, X. Han, B. (2020), A hydroxyl-containing hyperbranched polymer as a multi-purpose modifier for a dental epoxy, Reactive and Functional Polymers Vol, 149, pp. 104-110. Search in Google Scholar

[27] Daghrery, A. Aytac, Z. Dubey, N. Mei, L.; Schwendeman, A. Bottino, M.C. (2020), Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy, Colloids and Surfaces B: Biointerfaces Vol. 191. Search in Google Scholar

[28] Melinda, S.; Gáll, J.; Katalin, B.; Borbély, J.; Hegedus, C. Synthesis and characterization of cross-linked polymeric nanoparticles and their composites for reinforcement of photocurable dental resin. Reactive and Functional Polymers 2013, 73, 465–473. doi: 10.1016/j.reactfunctpolym.2012.11.013. Open DOISearch in Google Scholar

[29] Imazato, S. Ma, S. Chen, J.h. Xu, H.H.K. (2014), Therapeutic polymers for dental adhesives: loading resins with bio-active components, Dental materials: official publication of the Academy of Dental Materials Vol. 30, pp. 97–104. Search in Google Scholar

[30] Beyer, M. Reichert, J. Sigusch, B.W. Watts, D.C. Jandt, K.D. (2012), Morphology and structure of polymer layers protecting dental enamel against erosion, Dental materials: official publication of the Academy of Dental Materials Vol. 28, pp. 1089–1097. Search in Google Scholar

[31] Ochiai, T. Tago, S. Hayashi, M. Hirota, K. Kondo, T. Satomura, K. Fujishima, A. (2016), Boron-doped diamond powder (BDDP)-based polymer composites for dental treatment using flexible pinpoint electrolysis unit. Electrochemistry Communications Vol. 68, pp. 49–53.10.1016/j.elecom.2016.04.011 Search in Google Scholar

[32] Tsuboi, R. Sasaki, J.I. Kitagawa, H. Yoshimoto, I. Takeshige, F. Imazato, S. (2018), Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration, Dental materials: official publication of the Academy of Dental Materials Vol. 34, pp. 641–648. Search in Google Scholar

[33] Zhang, Y. Wu, N. Bai, X. Xu, C. Liu, Y. Wang, Y. (2013), Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives, Materials science & engineering. C, Materials for biological applications Vol. 33, pp. 3670–3676.10.1016/j.msec.2013.04.053376026423910263 Search in Google Scholar

[34] Cui, B. Li, J. Wang, H. Lin, Y. Shen, Y. Li, M. Deng, X. Nan, C. (2017), Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration, Journal of Dentistry Vol. 62. Pp. 91-97. Search in Google Scholar

[35] Liu, F. Cheng, Y. Jiang, X. Zhang, Q. Zhu, M. (2013), Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties, Materials science & engineering. C, Materials for biological applications 2Vol. 33, pp. 4994–5000.10.1016/j.msec.2013.08.02924094216 Search in Google Scholar

[36] Silva, M. Felismina, R. Mateus, A. Parreira, P. Malça, C. (2017), Application of a Hybrid Additive Manufacturing Methodology to Produce a Metal/Polymer Customized Dental Implant, Procedia Manufacturing Vol. 12, pp. 150–155. Search in Google Scholar

[37] Krasowska, M. Barszczewska-Rybarek, I.M. (2016), The percolation theory in studying the morphology of polymer networks formed by photopolymerization of dental dimethacrylates, European Polymer Journal Vol. 76, pp. 77–87. Search in Google Scholar

[38] Nguyen, S. Escudero, C. Sediqi, N. Smistad, G. Hiorth, M. (2017), Fluoride loaded polymeric nanoparticles for dental delivery, European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences Vol. 104, pp. 326–334. Search in Google Scholar

[39] Kong, N. Jiang, T. Zhou, Z. Fu, J. (2009), Cytotoxicity of polymerized resin cements on human dental pulp cells in vitro, Dental materials: official publication of the Academy of Dental Materials Vol. 25, pp. 1371–1375. Search in Google Scholar

eISSN:
2668-4217
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, andere, Technik, Elektrotechnik, Grundlagen der Elektrotechnik, Maschinenbau, Grundlagen des Maschinenbaus, Mathematik, Allgemeines